描述
开 本: 16开纸 张: 轻型纸包 装: 平装-胶订是否套装: 否国际标准书号ISBN: 9787210118046
★数千年来,只有《几何原本》写出了逻辑演绎的本质
欧几里得以天才的构思,总结了古希腊人的思维框架,即合理的假设→缜密的演绎→结论,形成了一个严密的逻辑体系。这一方法后来成为建立任何知识体系的典范,被奉为必须遵守的严密思维的范例。
★2000多年来以不同文字出版1000版以上,无数人因阅读此书有了强逻辑
★逻辑思考是做好每件事的必备能力!
《几何原本》重要性不仅在于它提出的一系列意义重大的公式、定理,更在于它建立了缜密的逻辑体系,进而演变成了一种借助数学去理解世界的思想体系。
★清华大学科学史系教授张卜天忠实翻译
清华大学科学史系教授、豆瓣现象级9.3分《大问题》译者张卜天,严格按照《几何原本》原文忠实翻译,而非市面版本使用现代数学翻译古希腊数学,旨在严谨还原欧几里得建立逻辑体系的完整过程。
★爱因斯坦、牛顿、罗素、林肯等科学家、政治家深受此书启发
★*科学家丘成桐、张首晟、陈省身推荐阅读
★易中天、冯唐、吴国盛、刘钝推荐译本
★现代人家庭里没有《几何原本》,相当于基督教家庭里没有《圣经》
★徐光启:能精此书者,无一事不可精;好学此书者,无一事不可学
★一线设计师工作室操刀设计,双封典藏大开本镇宅神书
《几何原本》是古希腊数学家欧几里得的一部不朽之作,集整个古希腊数学的成果与精神于一身。大约成书于公元前300年,全书共分13卷。书中保存了许多古希腊早期的几何学理论,欧几里得进行了开创性的系统整理和完整阐述。
《几何原本》在2000多年间已经用不同文字出版了1000版以上,出版量仅次于《圣经》。1607年,明代数学家徐光启与利玛窦首次在中国翻译了《几何原本》前6卷,极大地影响了中国原有数学学习和研究的习惯,改变了中国数学发展的方向。咸丰初年,曾国藩资助且代序推荐,数学家李善兰完成徐光启与利玛窦未竟之业,《几何原本》中文完整版首次面世。
《几何原本》的重要性不仅在于它所提出的一系列意义重大的公式、定理,而是它建立了严密的逻辑,进而演变成了一种借助数学去理解世界的思想体系。古希腊、古罗马、中世纪、文艺复兴、近代科学、现代世界的格局等等,无不是在这种思想体系的框架中产生。
徐光启曾评价此书:能精此书者,无一事不可精;好学此书者,无一事不可学。
第一卷
第二卷
第三卷
第四卷
第五卷
第六卷
第七卷
第八卷
第九卷
第十卷
第十一卷
第十二卷
第十三卷
译后记
如果欧几里得未能激发你少年时代的科学热情,那你肯定不是天才科学家。
–科学家爱因斯坦
几何学是一个训练自由人性的基本学科,一个没经受过几何训练的人,不可能拥有一颗自由的心灵。
–思想家、哲学家柏拉图
能精此书者,无一事不可精;好学此书者,无一事不可学。
–科学家、政治家徐光启
欧几里得的《几何原本》并不仅仅是几何,而是整个数学。
–*数学大师,现代微分几何之父陈省身
欧氏几何定理不见得对社会有直接贡献,可它的推理方式却是*有效的逻辑训练。将来无论你是做科学家,是做政治家,还是做一个成功的商人,都需要有系统的逻辑训练。
–*数学大师,几何分析学科奠基人丘成桐
《几何原本》不但奠定了整个几何学的基础,也制定了整个科学研究的方法。
–*物理学家,斯坦福大学终身教授张首晟
不学几何学,你就无法成为一个真正意义的现代人–不能理解现代世界的逻辑,没办法预见现代世界的发展方向。
–清华大学人文学院教授、科学史系主任吴国盛
这一次他(张卜天)的努力算是*接近西方科学的源头了。……为中文读者提供了一个尽量接近原典的朴实可靠读本。
–柯瓦雷荣誉奖章获得者、清华大学特聘教授刘钝
译后记
张卜天
欧几里得(,Euclid,活跃于公元前300年左右)是埃及托勒密王朝亚历山大城的古希腊数学家,其生活年代介于柏拉图(Plato,前427-前347)和阿波罗尼奥斯(Apollonius of Perga,约前262-约前190)之间。他的主要著作《几何原本》(Στοιχε?α,Elements)[一译《原本》]是人类历史上最伟大的著作之一,对数学、自然科学乃至一切人类文化领域都产生了极其深远的影响。从1482年第一个印刷版本问世一直到19世纪末,《几何原本》一直是主要的数学(尤其是几何学)教科书,印刷了一千多个版本,数量仅次于《圣经》,“欧几里得”也几乎成为“几何学”的同义词。2400年来,它从希腊文先后被译成阿拉伯文、拉丁文和各种现代语言,无数人对它做过研究。
《几何原本》的原希腊标题中本无与“几何”对应的词,中文的“几何”二字是1607年利玛窦(Matteo Ricci,1552-1610)和徐光启(1562-1633)合译出版《几何原本》前六卷时经过认真考量添加的。目前通行的《几何原本》包含十三卷(另外两卷被认为是后人续写的),由若干定义、公设、公理、命题和对命题的数学证明所组成,其数目编号是后来的拉丁文译本所引入的。《几何原本》所涉及的范围超出了我们所理解的几何学,还扩展到比例论、数论和对不可公度量的处理等领域。学者们认为,《几何原本》在很大程度上是根据一些早期希腊数学家的著作所作的命题汇编。
在两千多年的时间里,《几何原本》一直被视为纯粹数学的公理化演绎结构的典范,其逻辑公理化方法和严格的证明仍然是数学的基石。它从几个简单的定义以及几条看起来自明的公理、公设出发,竟然能够推导出大量根本无法直观且不可错的复杂结论。在很大程度上,这种数学演绎也因此成为西方思想中最能体现理性的清晰性和确定性的思维方式。哥白尼、开普勒、伽利略和牛顿等许多科学家都曾受到《几何原本》的影响,并把他们对《几何原本》的理解运用到自己的研究中。霍布斯、斯宾诺莎、怀特海和罗素等哲学家也都尝试在自己的作品中采用《几何原本》所引入的公理化演绎结构。爱因斯坦回忆说,《几何原本》曾使儿时的他大为震撼,并把《几何原本》称为“那本神圣的几何学小书”。
《几何原本》在思想史上有双重意义。首先,它把新的严格性标准引入了数学推理,这种逻辑严格性直到19世纪才被超越;其次,它朝着数学的几何化迈出了决定性一步。欧几里得之前的毕达哥拉斯学派和阿基米德,以及欧几里得之后的丢番图都表明,希腊数学也可以沿着其他方向发展。正是《几何原本》确保了数学应当由几何形式的证明来主导。欧几里得的几何数学观的这种决定性影响反映在思想史上最伟大的两部名著——牛顿的《自然哲学的数学原理》和康德的《纯粹理性批判》中:牛顿的作品是以欧几里得的几何证明的形式写成的,康德则因为相信欧几里得几何的普遍有效性而提出了一种支配其整个知识理论的先验感性论。直到19世纪,欧几里得几何的魔咒才开始被打破,不仅不同的“平行公理”引出了非欧几何理论,而且开始出现一种对“数学的算术化”的渴望。20世纪初,随着量子力学的发展,我们在物理学中看到了一种新毕达哥拉斯主义观点的回归,认为数才是万物的秘密。如今,虽然欧几里得可能不再是唯一的权威,但他仍然是最大的权威之一。
公元4世纪,亚历山大里亚的西翁(Theon of Alexandria,约335-约405)制作了一个《几何原本》的版本,它被广泛使用,在19世纪以前一直是唯一幸存的原始版本。公元800年左右,《几何原本》在阿拔斯王朝的第五任哈里发哈伦·拉希德(Harun al-Rashid,766-809)治下被译成阿拉伯文。1120年左右,英格兰自然哲学家巴斯的阿德拉德(Adelard of Bath,约1080-约1152)将《几何原本》从阿拉伯文译成拉丁文。第一个印刷版于1482年问世,它所依据的是意大利数学家、天文学家诺瓦拉的坎帕努斯(Campanus of Novara,约1220 – 1296)1260年从阿拉伯文译成的拉丁文本。西翁的希腊文版于1533年被重新发现。最早的英译本The elements of geometrie of the most ancient philosopher Euclide of Megara于1570年出版,它是英格兰商人亨利·比林斯利(Henry Billingsley,?-1606)从希腊文原文直接翻译的,而不是从广为人知的坎帕努斯拉丁文本转译。最早的汉译本是1607年利玛窦和徐光启合译出版的,他们所参照的底本是耶稣会数学家克拉维乌斯(Christopher Clavius,1538-1612)的拉丁文评注本《原本十五卷》(Elementorum Libri XV),但只译出了《几何原本》的前六卷。直到1857年,伟烈亚力(Alexander Wylie,1815-1887)和李善兰(1811-1882)才共同译出了《几何原本》的后九卷。1808年,法国数学家、教育学家弗朗索瓦·佩拉尔(François Peyrard,1760-1822)在梵蒂冈图书馆发现了一个并非源于西翁的抄本,它所给出的文本要更早。正是根据这个抄本,丹麦语文学家、历史学家海贝格(Johan Ludvig Heiberg,1854–1928)编辑了带有拉丁文评注的权威希腊文版《几何原本》。1908年,英国古典学家、数学史家托马斯·希思爵士(Sir Thomas L. Heath,1861-1940)基于海贝格的希腊文版,在剑桥大学出版社出版了权威的英译本Thirteen Books of Euclid’s Elements,并且附上了大量英文评注,1926年又出版了第二版。目前市面上流行的Dover版三卷本(1956年)正是这个剑桥第二版的影印。
希思的英译本虽然距今已逾一个世纪,但仍然是最权威的标准译本。希思深厚的古典学修养和对古希腊数学的精当理解在他那个时代就已经世所公认,至今也是如此。重要的是,今天尚没有一位研究古希腊数学特别是欧几里得的学者能够更好地重新翻译《几何原本》。一些人觉得希思的语言过时了或者难以理解,便试图将《几何原本》的文本重新改写成更符合现代读者习惯的语言,特别是,没有古代数学史基础的人往往会有意无意地用今天的概念,而不是欧几里得所理解和使用的概念来重新表述《几何原本》中的定义、公设或命题,这是不可取的。如果只是想学习一些几何学知识,问题倒还不大,但如果想知道欧几里得究竟是如何思考和呈现其体系的,那么这样做只会加深误解,使我们更加远离希腊人对几何学的看法和做法。
目前市面上可见的《几何原本》中译本有近十种,但真正付出过严肃认真的学术努力的版本只有兰纪正和朱恩宽翻译的当代汉语版本(1990年在陕西科学技术出版社出版,2003年修订再版,后于译林出版社重新出版),其他译本则大都粗制滥造、无甚价值。兰纪正和朱恩宽译本的底本正是希思的英译本,但并未把其中的大量评注译出。在这些评注中,希思对《几何原本》的源流和版本,每个定义、公理、公设、命题的来龙去脉,以及其中涉及的难以理解的关键术语都做了极为详细的解说,如能将这些内容全部译出,其重大的学术意义自不待言。但不译评注也并非没有好处:首先,希思的版本有三卷、1400多页,《几何原本》的不同卷次分散于三卷之中,非常不方便携带和查阅;其次,要想在希思版中从一条命题移到下一条命题,往往需要翻过若干页的评注,这使人很难找到欧几里得的原文在哪里继续,从而就欧几里得的原有体系形成清晰图像;此外,虽然希思的英译很好,但并非他的所有评注都恰当和正确。这些评注毕竟是在一百多年前做出的,随着学术的发展,其中不少内容已经过时,而且希思在很多地方也不可避免用现代的数学概念来解释欧几里得,从而产生误导。
兰纪正、朱恩宽版的中译本虽几经打磨,但仍然包含着不少错误。其中一些是难以避免的小错,比如字母的误抄和关键术语未统一,但也有一些错误是因为没有正确理解原文,这既包括对有些原文句子结构的错误理解,也包括我们前面所说的对几何原本做了过于现代的处理。仅以《几何原本》第一卷的定义1和定义3为例。定义1的原文是:“A point is that which has no part.”兰、朱版译为“点是没有部分的”,但其实应当译为“点是没有部分的东西”。“东西”二字的加与不加,反映了对“点”的本质定义和属性定义之别。欧几里得说的是,一个东西只要没有部分,那就是点。而根据兰、朱版译文,就好像“点”除了“没有部分”这个属性还有别的什么属性似的。定义3的原文是:“The extremities of a line are points.”兰、朱版译为“一线的两端是点”,但其实应当译为“线之端是点”,原文中并没有“两”。欧几里得说的是,“线”只要有“端”,那就是“点”,但并没有说“线”有“两”端,比如圆就是线,但圆并没有端。之所以有这样的误译,是因为天然把“线”理解成了现在的“直线段”。类似地,我也没有按照现代数学的理解把欧几里得所说的“直线”(straight line)译成“线段”,把“圆周”(circumference)译成“弧”,甚至没有把“二倍比”(duplicate ratio)、“三倍比”(triplicate ratio)译成“二次比”、“三次比”,因为在古希腊和中世纪,我们所说的“比的相乘或相除”被称为“比的相加或相减”,如果把“倍”译成“次”,虽然符合现代的理解,但我们阅读有些古代数学文献时就会一头雾水,事实上,这种误解在科学史上的确导致过严重后果。
基于以上考虑,我以希思的英译文为底本,不揣冒昧地重新翻译了《几何原本》的正文,并且尽可能地忠实于原文,不做过分现代的解读。我还把《几何原本》各卷的定义、公设、公理、命题题干的希思英译文附上,以方便读者对照。虽然兰、朱译本仍有不小改进的余地,但如果没有这个译本先前付出的巨大努力,我是不敢接手这项艰巨任务的。我深知,改进一个译本永远比从无到有的翻译容易得多,因此我要向兰纪正、朱恩宽两位先生的开拓性努力致以深深的敬意。我并非研究古希腊数学和欧几里得的专家,对希腊语也只知皮毛,译这部经典名著可谓诚惶诚恐,也倍感荣幸。真诚地期待广大专家和读者不吝指正!
评论
还没有评论。