描述
开 本: 16开纸 张: 胶版纸包 装: 平装是否套装: 否国际标准书号ISBN: 9787802579507
内容简介
有限群研究的根本问题是确定有限群的结构。因为子群的正规性与有限群的结构有着非常紧密的联系,所以希望利用正规子群的性质来决定有限群的结构。非平凡正规子群个数对有限群的结构也有很大的影响。例如:著名的有限单群分类就研究了没有非平凡正规子群的有限群。这一定理是数百位数学家经过数十年努力完成的。另外,早在1897年, R.Dedekind就决定了所有子群都正规的有限群,这样的群被称为Dedekind群。本人一直以来都在研究非平凡正规子群个数对有限群结构的影响,在对这一类问题进行详细、系统的阐述后,得到的一些研究成果,整理成此专著,希望对读者有所帮助。
目 录
章NNU-群
§1.1基本结果
§1.2NNU-群的结构
第二章NCUP-群
§2.1预备知识
§2.2初步结果
§2.3超特殊NCUP-群
§2.4NCUP-群的进一步结果和群例
§2.5内NCUP-群
第三章可解NNT-群
§3.1预备知识
§3.2可解NNT-群的主要结果
第四章可解NCM-群
§4.1预备知识
§4.2可解NCM-群的分类
第五章非可解NCM-群
§5.1定义及引理
§5.2半单NCM-群
§5.3非半单NCM-群
参考文献
§1.1基本结果
§1.2NNU-群的结构
第二章NCUP-群
§2.1预备知识
§2.2初步结果
§2.3超特殊NCUP-群
§2.4NCUP-群的进一步结果和群例
§2.5内NCUP-群
第三章可解NNT-群
§3.1预备知识
§3.2可解NNT-群的主要结果
第四章可解NCM-群
§4.1预备知识
§4.2可解NCM-群的分类
第五章非可解NCM-群
§5.1定义及引理
§5.2半单NCM-群
§5.3非半单NCM-群
参考文献
评论
还没有评论。