描述
开 本: 16开纸 张: 胶版纸包 装: 平装-胶订是否套装: 否国际标准书号ISBN: 9787115506665
中国信息通信研究院云计算与大数据研究所所长 何宝宏博士作序推荐
源自前华为技术专家的集大成之作
人工神经网络的大师级学院派作品
聚焦于原理讲解 不涉及编码实现 旨在传授纯粹的人工神经网络知识
近年来,人工神经网络又一次成为了人工智能领域的研究热点。随着研究工作的不断深入,人工神经网络在图像识别、语音识别、自动语言处理、自动控制、数据挖掘、预测估计以及生物、医学、经济等领域取得了越来越多令人惊叹的成功应用。
本书采用了浅显易懂、简洁明快的风格来讲解人工神经网络的原理性知识,其内容涵盖了生物神经元的基础知识、关键的数学知识点,以及多种常见而典型的人工神经网络模型,如感知器(Perceptron)、多层感知器(MLP)、径向基函数神经网络(RBFNN)、卷积神经网络(CNN)、循环神经网络(RNN)等。
本书旨在让读者在短时间内对人工神经网络的工作原理有一个清晰明了的认识和理解。本书只聚焦原理性知识的讲解,不涉及编程实现,即使对程序编码尚不熟悉的读者也可以轻松阅读理解。
《深入浅出人工神经网络》总共分为3部分,总计9章。第1部分讲解了人工神经网络的源头—生物神经网络的基础知识,第2部分讲解了学习人工神经网络的数学知识,第3部分讲解了几种常见而典型的人工神经网络模型,比如感知器、多层感知器、径向基函数神经网络、卷积神经网络、循环神经网络等。
《深入浅出人工神经网络》写作风格简洁明快,深入浅出,特别适合对人工神经网络/人工智能感兴趣的入门级读者。本书只聚焦原理性知识的讲解,不涉及编程实现,即使对程序编码尚不熟悉的读者也可以轻松阅读理解。本书还可用作高等院校以及相关培训机构的教学或参考用书。
1.1 什么是智能 / 1
1.2 大脑与神经元 / 2
1.3 关于人工智能/机器学习/神经网络/深度学习 / 7
第 2章 函数 10
2.1 函数的极限 / 10
2.2 函数的连续性 / 13
2.3 导数 / 14
2.4 凹凸性与拐点 / 21
2.5 极值与驻点 / 23
2.6 曲率 / 25
2.7 二元函数 / 27
第3章 梯度 34
3.1 矢量的概念 / 34
3.2 矢量的运算 / 35
3.3 矢量与坐标 / 37
3.4 方向角与方向余弦 / 39
3.5 矢量的数量积 / 40
3.6 函数的梯度 / 42
第4章 矩阵 50
4.1 矩阵的概念及运算 / 50
4.2 矩阵的初等变换 / 54
4.3 矢量的矩阵表示法 / 57
4.4 矩阵的秩 / 58
4.5 矩阵的逆 / 63
4.6 从标量函数到矩阵函数 / 69
第5章 MCP模型及感知器(Perceptron) 80
5.1 MCP模型 / 80
5.2 模式识别初探 / 84
5.3 感知器 / 88
5.4 凸集与单层感知器 / 94
5.5 XOR问题 / 98
第6章 多层感知器(MLP) 100
6.1 纵向串接 / 100
6.2 MLP的基本架构 / 102
6.3 BP算法 / 108
6.4 梯度下降法 / 120
6.5 极小值问题 / 121
6.6 学习率 / 123
6.7 批量训练 / 125
6.8 欠拟合与过拟合 / 127
6.9 容量 / 128
6.10 拓扑 / 130
6.11 收敛曲线 / 132
6.12 训练样本集 / 133
6.13 权值连接方式 / 135
第7章 径向基函数神经网络(RBFNN) 137
7.1 插值的概念 / 137
7.2 RBF / 141
7.3 从精确插值到RBFNN / 148
7.4 Cover定理 / 151
7.5 空间分割问题 / 154
7.6 训练策略 / 156
第8章 卷积神经网络(CNN) 157
8.1 卷积运算与相关运算 / 157
8.2 卷积核与特征映射图 / 188
8.3 CNN的一般结构 / 195
8.4 三种思想 / 207
8.5 边界策略 / 209
8.6 池化 / 211
8.7 CNN网络实例 / 214
8.8 Hubel-Wiesel实验 / 225
第9章 循环神经网络(RNN) 228
9.1 N-Gram模型 / 228
9.2 RNN示例 / 232
9.3 单向RNN / 237
9.4 BPTT算法 / 240
9.5 填空问题 / 255
9.6 双向RNN / 263
9.7 梯度爆炸与梯度消失 / 265
9.8 LSTM / 269
结束语 278
——焦李成,中国人工智能学会副理事长,教育部人工智能科技创新专家组成员
评论
还没有评论。