描述
开 本: 16开纸 张: 胶版纸包 装: 平装-胶订是否套装: 否国际标准书号ISBN: 9787302516927
《深度学习:语音识别技术实践》一书既适合需要具体实现语音识别的程序员使用,也适合有一定机器学习或语音识别基础的学生、研究者或从业者阅读。
★★业内流行的Kaldi语音识别技术实践。
★★猎兔搜索技术团队语音识别技术总结,引领语音识别技术升级。
★★IBM资深软件架构师丁朝杰重磅推荐。
《深度学习:语音识别技术实践》从语音识别的基础开始讲起,并辅以翔实的案例,既适合需要具体实现语音识别的程序员使用,也适合有一定机器学习或语音识别基础的学生、研究者或从业者阅读。
第1章 语音识别技术 1
1.1 总体结构 1
1.2 Linux基础 2
1.3 安装Micro编辑器 4
1.4 安装Kaldi 5
1.5 yesno例子 6
1.5.1 数据准备 7
1.5.2 词典准备 8
1.6 构建一个简单的ASR 12
1.7 Voxforge例子 21
1.8 数据准备 23
1.9 加权有限状态转换 34
1.9.1 FSA 35
1.9.2 FST 35
1.9.3 WFST 37
1.9.4 Kaldi对OpenFst的改进 38
1.10 语音识别语料库 39
1.10.1 TIMIT语料库 39
1.10.2 LibriSpeech语料库 40
1.10.3 中文语料库 40
1.11 Linux shell脚本基础 40
1.11.1 Bash 41
1.11.2 AWK 44
第2章 C#开发语音识别 46
2.1 准备开发环境 46
2.2 计算卷积 47
2.3 记录语音 48
2.4 读入语音信号 52
2.5 离散傅里叶变换 53
2.6 移除静音 54
第3章 Perl开发语音识别 58
3.1 变量 58
3.1.1 数字 58
3.1.2 字符串 59
3.1.3 数组 60
3.1.4 散列表 60
3.2 多维数组 62
3.3 常量 62
3.4 操作符 63
3.5 控制流 66
3.6 文件与目录 67
3.7 例程 68
3.8 执行命令 69
3.9 正则表达式 69
3.9.1 基本类型 69
3.9.2 正则表达式模式 70
3.10 命令行参数 72
第4章 Python开发语音识别 73
4.1 Windows操作系统下安装Python 73
4.2 Linux操作系统下安装Python 75
4.3 选择版本 76
4.4 开发环境 76
4.5 注释 77
4.6 变量 77
4.6.1 数值 77
4.6.2 字符串 79
4.7 数组 80
4.8 列表 80
4.9 元组 80
4.10 字典 81
4.11 控制流 81
4.11.1 条件判断 81
4.11.2 循环 82
4.12 模块 83
4.13 函数 84
4.14 读写文件 86
4.15 面向对象编程 87
4.16 命令行参数 88
4.17 数据库 90
4.18 日志记录 90
4.19 异常处理 92
4.20 测试 92
4.21 语音活动检测 93
4.22 使用numpy 93
第5章 Java开发语音识别 94
5.1 实现卷积 95
5.2 KaldiJava 96
5.2.1 使用Ant 97
5.2.2 使用Maven 99
5.2.3 使用Gradle 100
5.2.4 概率分布函数 102
5.3 TensorFlow的Java接口 104
5.3.1 在Windows操作系统下使用TensorFlow 104
5.3.2 在Linux操作系统下使用TensorFlow 106
第6章 语音信号处理 109
6.1 使用FFmpeg 109
6.2 标注语音 110
6.3 时间序列 112
6.4 端点检测 113
6.5 动态时间规整 114
6.6 傅里叶变换 117
6.6.1 离散傅里叶变换 117
6.6.2 快速傅里叶变换 120
6.7 MFCC特征 124
6.8 说话者识别 125
6.9 解码 125
第7章 深度学习 132
7.1 神经网络基础 132
7.1.1 实现多层感知器 135
7.1.2 计算过程 143
7.2 卷积神经网络 150
7.3 搭建深度学习开发环境 156
7.3.1 使用Cygwin模拟环境 156
7.3.2 使用CMake 157
7.3.3 使用Keras 158
7.3.4 安装TensorFlow 161
7.3.5 安装TensorFlow的Docker容器 162
7.3.6 使用TensorFlow 164
7.3.7 一维卷积 208
7.3.8 二维卷积 210
7.3.9 扩张卷积 213
7.3.10 TensorFlow实现简单的语音识别 214
7.4 nnet3实现代码 216
7.4.1 数据类型 217
7.4.2 基本数据结构 219
7.5 编译Kaldi 230
7.6 端到端深度学习 232
7.7 Dropout解决过度拟合问题 232
7.8 矩阵运算 235
第8章 语言模型 238
8.1 概率语言模型 238
8.1.1 一元模型 240
8.1.2 数据基础 240
8.1.3 改进一元模型 249
8.1.4 二元词典 251
8.1.5 完全二叉树数组 257
8.1.6 三元词典 261
8.1.7 N元模型 262
8.1.8 生成语言模型 264
8.1.9 评估语言模型 265
8.1.10 平滑算法 266
8.2 KenLM语言模型工具包 271
8.3 ARPA文件格式 275
8.4 依存语言模型 278
作为人工智能技术的重要组成部分,语音识别旨在研究计算机如何听懂人的讲话。来源于人工神经网络的深度学习促进了语音识别技术的发展。本书从使用开源的语音识别构建系统Kaldi开始讲起,引导读者亲自实现语音识别系统,使用了C#、Perl、Python、Java等多种编程工具。第1章介绍语音识别的基本原理和Kaldi的基本使用方法,以及使用Kaldi开发语音识别系统应用到的Linux shell脚本基础;第2章介绍使用C#开发语音识别系统;第3章介绍Perl语言开发基础;第4章介绍开发语音识别系统所需要的Python基础;第5章介绍使用Java开发语音识别系统;第6章介绍傅里叶变换、MFCC特征等常用的语音信号处理方法;第7章介绍基本的神经网络和深度学习方法及训练神经网络的反向传播方法;第8章介绍语音识别解码阶段用到的语言模型,以及语言模型工具包——KenLM。
本书适合需要具体实现语音识别的程序员使用,对机器学习等相关领域的研究人员也有一定的参考价值。猎兔搜索技术团队已经开发出以本书为基础的专门培训课程和商业软件。
本书由柳若边编著,罗刚、沙芸、张子宪、许想娇、石天盈、张继红、罗庭亮、王全军、刘宇、张天津也参与了本书的部分编创工作。本书相关的参考软件和代码在读者QQ群(378025857)的附件中可以找到。Kaldi及其底层依赖的软件,其复杂程度已经超越了一个人所能掌握的程度。此外,一些具体的细节也可以在读者QQ群讨论。在此,感谢早期合著者、合作伙伴、员工、学员、读者的支持,他们为本书的编创提供了良好的工作基础。技术的融合与创新永无止境,就如同在玻璃容器中水培植物一样,这是一个持久的工作。
编著者
2018年12月
评论
还没有评论。