描述
开 本: 16开纸 张: 胶版纸包 装: 精装是否套装: 否国际标准书号ISBN: 9787122333827
《现代机械设计手册》第二版是顺应“中国制造2025”智能装备设计新要求的、技术先进、数据可靠的一套现代化的机械设计大型工具书,涵盖现代机械零部件设计、智能装备及控制设计、现代机械设计方法三部分内容。具有以下六大特色。
1.权*威性。《现代机械设计手册》阵容强大,编、审人员大都来自于设计、生产、教学和科研一线,具有深厚的理论功底、丰富的设计实践经验。这支专业的编审队伍确保了手册准确、实用的内容质量。
2.现代感。体现现代机械设计气氛,满足时代要求,是《现代机械设计手册》的基本宗旨。“现代”二字主要体现在:新标准、新技术、新材料、新结构、新工艺、新产品、智能化、现代的设计理念、现代的设计方法和现代的设计手段等几个方面。第二版重点加强机械智能化产品设计(3D打印、智能零部件、节能元器件等)、智能装备(机器人及智能化装备等)控制元器件及系统设计、数字化设计等先进设计方法的应用技术等内容。
3.实用性。新版手册继续加强实用性,对传统机械零部件设计选用等基础性内容的选定、深度的把握、资料的取舍和章节的编排,都坚持从设计和生产的实际需要出发。为方便广大读者的使用和查阅,手册在具体内容的表述上,采用以图表为主的编写风格,有利于提高设计人员的工作效率和设计速度。
4.通用性。本手册以通用的机械零部件和控制元器件设计、选用内容为主,既适用于传统的通用机械零部件设计选用,又适用于智能化装备的整机系统设计开发,能够满足各类机械设计人员的工作需求。
5.准确性。本手册尽量采用原始资料,公式、图表、数据力求准确可靠,方法、工艺、技术力求成熟。所有材料、零部件和元器件、产品和工艺方面的标准均采用现行标准资料。手册中收录通用性强的、标准化程度高的产品,供设计人员在了解企业实际生产品种、规格尺寸、技术参数,以及产品质量和用户的实际反映后选用。
6.全面性。本手册一方面根据机械设计人员的需要,按照“基本、常用、重要、发展”的原则选取内容,另一方面兼顾了制造企业和大型设计院两大群体的设计特点,以全面适应新时代机械新产品设计开发的需要。
《现代机械设计手册》第二版是顺应“中国制造2025”智能装备设计新要求、技术先进、数据可靠的一部现代化的机械设计大型工具书,涵盖现代机械零部件及传动设计、智能装备及控制设计、现代机械设计方法三部分内容。第二版重点加强机械智能化产品设计(3D打印、智能零部件、节能元器件)、智能装备(机器人及智能化装备)控制及系统设计、现代设计方法及应用等内容。
《现代机械设计手册》共6卷,其中第1卷包括机械设计基础资料,零件结构设计,机械制图和几何精度设计,机械工程材料,连接件与紧固件;第2卷包括轴和联轴器,滚动轴承,滑动轴承,机架、箱体及导轨,弹簧,机构,机械零部件设计禁忌,带传动、链传动;第3卷包括齿轮传动,减速器、变速器,离合器、制动器,润滑,密封;第4卷包括液力传动,液压传动与控制,气压传动与控制;第5卷包括智能装备系统设计,工业机器人系统设计,传感器,控制元器件和控制单元,电动机;第6卷包括机械振动与噪声,疲劳强度设计,可靠性设计,优化设计,逆向设计,数字化设计,人机工程与产品造型设计,创新设计,绿色设计。
新版手册从新时代机械设计人员的实际需求出发,追求现代感,兼顾实用性、通用性、准确性,涵盖了各种常规和通用的机械设计技术资料,贯彻了*的国家和行业标准,推荐了国内外先进、智能、节能、通用的产品,体现了便查易用的编写风格。
《现代机械设计手册》可作为机械装备研发、设计技术人员和有关工程技术人员的工具书,也可供高等院校相关专业师生参考使用。
第19篇 液力传动
第1章液力传动设计基础
1.1液力传动的定义、特点及应用19-3
1.2液力传动的术语、符号19-4
1.2.1液力传动术语19-4
1.2.2液力元件图形符号19-7
1.3液力传动理论基础19-8
1.3.1基本控制方程19-8
1.3.2基本概念和定义19-11
1.3.3液体在叶轮中的运动19-12
1.3.3.1速度三角形及速度的分解19-12
1.3.3.2速度环量19-13
1.3.3.3液体在无叶栅区的流动19-13
1.3.4欧拉方程19-13
1.3.4.1动量矩方程19-13
1.3.4.2理论能头19-14
1.4液力传动的工作液体19-14
1.4.1液力传动油的基本要求19-14
1.4.2常用液力传动油19-15
1.4.3水基难燃液19-15
第2章液力变矩器
2.1液力变矩器的工作原理、特性19-17
2.1.1液力变矩器的工作原理19-17
2.1.1.1液力变矩器的基本结构19-17
2.1.1.2液力变矩器的工作过程和变矩原理19-17
2.1.1.3液力变矩器常用参数及符号19-18
2.1.2液力变矩器的特性19-20
2.2液力变矩器的分类及主要特点19-23
2.3液力变矩器的压力补偿及冷却系统19-26
2.3.1补偿压力19-26
2.3.2冷却循环流量和散热面积19-27
2.4液力变矩器的设计方法19-27
2.4.1相似设计法19-27
2.4.2统计经验设计方法19-29
2.4.3理论设计法19-32
2.4.3.1基于一维束流理论的设计方法19-32
2.4.3.2CFD/CAD现代设计方法19-43
2.4.4逆向设计法19-47
2.5液力变矩器的试验19-50
2.5.1试验台架19-50
2.5.2试验方法19-50
2.5.2.1外特性试验19-50
2.5.2.2液力元件内特性试验19-53
2.6液力变矩器的选型19-54
2.6.1液力变矩器的形式和参数选择19-54
2.6.2液力变矩器系列型谱19-55
2.6.3液力变矩器与动力机的共同工作19-55
2.6.3.1输入功率19-56
2.6.3.2泵轮特性曲线族和涡轮特性曲线族19-56
2.6.3.3液力变矩器有效直径和公称转矩选择19-58
2.6.3.4液力变矩器和动力机共同工作的输入特性曲线和输出特性曲线19-58
2.6.4液力变矩器与动力机的匹配19-58
2.6.5液力变矩器与动力机匹配的优化19-60
2.7液力变矩器的产品型号与规格19-61
2.7.1单级单相向心涡轮液力变矩器19-61
2.7.2多相单级和闭锁液力变矩器19-104
2.7.3可调液力变矩器19-114
2.8液力变矩器传动装置19-116
2.9液力变矩器的应用及标准状况19-124
2.9.1液力变矩器的应用19-124
2.9.2国内外标准情况和对照19-124
第3章液力机械变矩器
3.1液力机械变矩器的分类及原理19-126
3.1.1功率内分流液力机械变矩器19-126
3.1.1.1导轮反转内分流液力机械变矩器19-126
3.1.1.2多涡轮内分流液力机械变矩器19-127
3.1.2功率外分流液力机械变矩器19-127
3.1.2.1基本方程19-127
3.1.2.2用于特定变矩器的方程19-131
3.1.2.3分流传动特性的计算方法及实例19-134
3.1.2.4外分流液力机械变矩器的方案汇总19-137
3.2液力机械变矩器的应用19-139
3.2.1功率内分流液力机械变矩器的应用19-139
3.2.1.1导轮反转内分流液力机械变矩器19-139
3.2.1.2双涡轮内分流液力机械变矩器19-141
3.2.2功率外分流液力机械变矩器的应用19-142
3.2.2.1分流差速液力机械变矩器的应用19-142
3.2.2.2汇流差速液力机械变矩器的应用19-145
3.3液力机械变矩器产品规格与型号19-146
3.3.1双涡轮液力机械变矩器产品19-146
3.3.2导轮反转液力机械变矩器产品19-158
3.3.3功率外分流液力机械变矩器产品19-159
3.3.4液力机械变矩器传动装置产品19-161
第4章液力偶合器
4.1液力偶合器的工作原理19-164
4.2液力偶合器特性19-165
4.2.1液力偶合器的特性参数19-165
4.2.2液力偶合器特性曲线19-166
4.2.3影响液力偶合器特性的主要因素19-168
4.3液力偶合器分类、结构及发展19-170
4.3.1液力偶合器形式和基本参数19-170
4.3.1.1形式和类别19-170
4.3.1.2基本参数19-173
4.3.2液力偶合器部分充液时的特性19-173
4.3.3普通型液力偶合器19-174
4.3.4限矩型液力偶合器19-174
4.3.4.1静压泄液式限矩型液力偶合器19-177
4.3.4.2动压泄液式限矩型液力偶合器19-177
4.3.4.3复合泄液式限矩型液力偶合器19-188
4.3.5普通型、限矩型液力偶合器的安全保护装置19-189
4.3.5.1普通型、限矩型液力偶合器易熔塞19-189
4.3.5.2刮板输送机用液力偶合器易爆塞技术要求19-189
4.3.6调速型液力偶合器19-194
4.3.6.1进口调节式调速型液力偶合器19-198
4.3.6.2出口调节式调速型液力偶合器19-204
4.3.6.3复合调节式调速型液力偶合器19-212
4.3.7液力偶合器传动装置19-213
4.3.8液力减速器19-227
4.3.8.1机车用液力减速(制动)器19-227
4.3.8.2汽车用液力减速(制动)器19-228
4.3.8.3固定设备用液力减速(制动)器19-230
4.4液力偶合器设计19-232
4.4.1液力偶合器的类比设计19-232
4.4.2限矩型液力偶合器设计19-234
4.4.2.1工作腔模型(腔型)及选择19-234
4.4.2.2限矩型液力偶合器的辅助腔19-237
4.4.2.3限矩型液力偶合器的叶轮结构19-237
4.4.2.4工作腔有效直径的确定19-239
4.4.2.5叶片数目和叶片厚度19-239
4.4.3调速型液力偶合器设计19-239
4.4.3.1叶轮强度计算19-239
4.4.3.2叶轮强度有限元分析简介19-243
4.4.3.3液力偶合器的轴向力19-244
4.4.3.4导管及其控制19-245
4.4.3.5设计中的其他问题19-248
4.4.3.6油路系统19-249
4.4.3.7调速型液力偶合器的辅助系统与设备成套19-250
4.4.3.8调速型液力偶合器的配套件19-252
4.4.4液力偶合器传动装置设计19-259
4.4.4.1前置齿轮式液力偶合器传动装置简介19-259
4.4.4.2液力偶合器传动装置设计要点19-260
4.4.5液力偶合器的发热与冷却19-260
4.5液力偶合器试验19-262
4.5.1限矩型液力偶合器试验19-262
4.5.2调速型液力偶合器试验19-263
4.6液力偶合器选型、应用与节能19-264
4.6.1液力偶合器运行特点19-266
4.6.2液力偶合器功率图谱19-268
4.6.3限矩型液力偶合器的选型与应用19-268
4.6.3.1限矩型液力偶合器的选型19-268
4.6.3.2限矩型液力偶合器的应用19-269
4.6.4调速型液力偶合器的选型与应用19-274
4.6.4.1我国风机、水泵运行中存在的问题19-274
4.6.4.2风机、水泵调速运行的必要性19-274
4.6.4.3各类调速方式的比较 19-274
4.6.4.4应用液力偶合器调速的节能效益19-275
4.6.4.5风机、泵类调速运行的节能效果19-276
4.6.4.6风机、泵类流量变化形式对节能效果的影响19-276
4.6.4.7调速型液力偶合器的效率与相对效率19-277
4.6.4.8调速型液力偶合器的匹配19-278
4.6.4.9调速型液力偶合器的典型应用与节能19-279
4.7液力偶合器可靠性与故障分析19-283
4.7.1基本概念19-283
4.7.2 限矩型液力偶合器的故障分析19-284
4.7.3调速型液力偶合器的故障分析19-287
4.8液力偶合器典型产品及其选择19-290
4.8.1静压泄液式限矩型液力偶合器19-290
4.8.2动压泄液式限矩型液力偶合器19-292
4.8.2.1YOX、YOXⅡ、TVA外轮驱动直连式限矩型液力偶合器19-293
4.8.2.2YOXⅡZ外轮驱动制动轮式限矩型液力偶合器19-294
4.8.2.3水介质限矩型液力偶合器19-295
4.8.2.4加长后辅腔与加长后辅腔带侧辅腔的限矩型液力偶合器19-300
4.8.2.5加长后辅腔与加长后辅腔带侧辅腔制动轮式限矩型液力偶合器19-306
4.8.2.6加长后辅腔内轮驱动制动轮式限矩型液力偶合器19-312
4.8.3复合泄液式限矩型液力偶合器19-312
4.8.4调速型液力偶合器19-318
4.8.4.1出口调节安装板式箱体调速型液力偶合器19-318
4.8.4.2回转壳体箱座式调速型液力偶合器19-324
4.8.4.3侧开箱体式调速型液力偶合器19-326
4.8.4.4阀控式调速型液力偶合器19-329
4.9液力偶合器传动装置19-330
4.9.1前置齿轮增速式液力偶合器传动装置19-330
4.9.2后置齿轮减速式液力偶合器传动装置19-336
4.9.3后置齿轮增速式液力偶合器传动装置19-340
4.9.4组合成套型液力偶合器传动装置19-341
4.9.5后置齿轮减速箱组合型液力偶合器传动装置[偶合器正(反)车箱]19-345
4.10国内外调速型液力偶合器标准情况与对照19-345
第5章液黏传动
5.1液黏传动及其分类19-347
5.2液黏传动的基本原理19-347
5.3液黏传动常用术语、形式和基本参数19-347
5.3.1液黏传动常用术语19-347
5.3.2液黏传动元件结构形式19-347
5.3.3液黏传动的基本参数19-347
5.4液黏传动的工作液体19-347
5.5液黏调速离合器19-347
5.5.1集成式液黏调速离合器19-347
5.5.2分离式液黏调速离合器19-347
5.5.3液黏调速离合器运行特性19-347
5.5.4液黏传动的摩擦副19-347
5.5.5液黏调速离合器的性能特点及应用节能19-347
5.5.6液黏调速离合器常见故障与排除方法19-347
5.5.7国外液黏调速离合器的转速调控系统19-347
5.6液黏调速装置19-347
5.6.1平行轴传动液黏调速装置19-347
5.6.2差动轮系CST液黏调速装置19-347
5.7硅油风扇离合器19-347
5.8硅油离合器19-347
5.9液黏测功器19-347
5.10其他液黏传动元件19-347
5.11液黏传动在液力变矩器上的应用19-347
5.12国内外液黏元件标准情况与对照19-347
参考文献19-348
字数限制,仅显示部分目录。
《现代机械设计手册》第一版自2011年3月出版以来,赢得了机械设计人员、工程技术人员和高等院校专业师生广泛的青睐和好评,荣获了2011年全国优秀畅销书(科技类)。同时,因其在机械设计领域重要的科学价值、实用价值和现实意义,《现代机械设计手册》还荣获2009年国家出版基金资助和2012年中国机械工业科学技术奖。
《现代机械设计手册》第一版出版距今已经8年,在这期间,我国的装备制造业发生了许多重大的变化,尤其是2015年国家部署并颁布了实现中国制造业发展的十年行动纲领——中国制造2025,发布了针对“中国制造2025”的五大“工程实施指南”,为机械制造业的未来发展指明了方向。在国家政策号召和驱使下,我国的机械工业获得了快速的发展,自主创新的能力不断加强,一批高技术、高性能、高精尖的现代化装备不断涌现,各种新材料、新工艺、新结构、新产品、新方法、新技术不断产生、发展并投入实际应用,大大提升了我国机械设计与制造的技术水平和国际竞争力。《现代机械设计手册》第二版最重要的原则就是紧密结合“中国制造2025”国家规划和创新驱动发展战略,在内容上与时俱进,全面体现创新、智能、节能、环保的主题,进一步呈现机械设计的现代感。鉴于此,《现代机械设计手册》第二版被列入了“十三五国家重点出版物规划项目”。
在本版手册的修订过程中,我们广泛深入机械制造企业、设计院、科研院所和高等院校进行调研,听取各方面读者的意见和建议,最终确定了《现代机械设计手册》第二版的根本宗旨:一方面,新版手册进一步加强机、电、液、控制技术的有机融合,以全面适应机器人等智能化装备系统设计开发的新要求;另一方面,随着现代机械设计方法和工程设计软件的广泛应用和普及,新版手册继续促进传动设计与现代设计的有机结合,将各种新的设计技术、计算技术、设计工具全面融入传统的机械设计实际工作中。
《现代机械设计手册》第二版共6卷35篇,它是一部面向“中国制造2025” ,适应智能装备设计开发新要求、技术先进、数据可靠、符合现代机械设计潮流的现代化的机械设计大型工具书,涵盖现代机械零部件及传动设计、智能装备及控制设计、现代机械设计方法及应用三部分内容,具有以下六大特色。
1.权威性。《现代机械设计手册》阵容强大,编、审人员大都来自于设计、生产、教学和科研第一线,具有深厚的理论功底、丰富的设计实践经验。他们中很多人都是所属领域的知名专家,在业内有广泛的影响力和知名度,获得过多项国家和省部级科技进步奖、发明奖和技术专利,承担了许多机械领域国家重要的科研和攻关项目。这支专业、权威的编审队伍确保了手册准确、实用的内容质量。
2.现代感。追求现代感,体现现代机械设计气氛,满足时代要求,是《现代机械设计手册》的基本宗旨。“现代”二字主要体现在:新标准、新技术、新材料、新结构、新工艺、新产品、智能化、现代的设计理念、现代的设计方法和现代的设计手段等几个方面。第二版重点加强机械智能化产品设计(3D打印、智能零部件、节能元器件)、智能装备(机器人及智能化装备)控制及系统设计、数字化设计等内容。
(1)“零件结构设计”等篇进一步完善零部件结构设计的内容,结合目前的3D打印(增材制造)技术,增加3D打印工艺下零件结构设计的相关技术内容。
“机械工程材料”篇增加3D打印材料以及新型材料的内容。
(2)机械零部件及传动设计各篇增加了新型智能零部件、节能元器件及其应用技术,例如“滑动轴承”篇增加了新型的智能轴承,“润滑”篇增加了微量润滑技术等内容。
(3)全面增加了工业机器人设计及应用的内容:新增了“工业机器人系统设计”篇;“智能装备系统设计”篇增加了工业机器人应用开发的内容;“机构”篇增加了自动化机构及机构创新的内容;“减速器、变速器”篇增加了工业机器人减速器选用设计的内容;“带传动、链传动”篇增加并完善了工业机器人适用的同步带传动设计的内容;“齿轮传动”篇增加了RV减速器传动设计、谐波齿轮传动设计的内容等。
(4)“气压传动与控制”“液压传动与控制”篇重点加强并完善了控制技术的内容,新增了气动系统自动控制、气动人工肌肉、液压和气动新型智能元器件及新产品等内容。
(5)继续加强第5卷机电控制系统设计的相关内容:除增加“工业机器人系统设计”篇外,原“机电一体化系统设计”篇充实扩充形成“智能装备系统设计”篇,增加并完善了智能装备系统设计的相关内容,增加智能装备系统开发实例等。
“传感器”篇增加了机器人传感器、航空航天装备用传感器、微机械传感器、智能传感器、无线传感器的技术原理和产品,加强传感器应用和选用的内容。
“控制元器件和控制单元”篇和“电动机”篇全面更新产品,重点推荐了一些新型的智能和节能产品,并加强产品选用的内容。
(6)第6卷进一步加强现代机械设计方法应用的内容:在3D打印、数字化设计等智能制造理念的倡导下,“逆向设计”“数字化设计”等篇全面更新,体现了“智能工厂”的全数字化设计的时代特征,增加了相关设计应用实例。
增加“绿色设计”篇;“创新设计”篇进一步完善了机械创新设计原理,全面更新创新实例。
(7)在贯彻新标准方面,收录并合理编排了目前最新颁布的国家和行业标准。
3.实用性。新版手册继续加强实用性,内容的选定、深度的把握、资料的取舍和章节的编排,都坚持从设计和生产的实际需要出发:例如机械零部件数据资料主要依据最新国家和行业标准,并给出了相应的设计实例供设计人员参考;第5卷机电控制设计部分,完全站在机械设计人员的角度来编写——注重产品如何选用,摒弃或简化了控制的基本原理,突出机电系统设计,控制元器件、传感器、电动机部分注重介绍主流产品的技术参数、性能、应用场合、选用原则,并给出了相应的设计选用实例;第6卷现代机械设计方法中简化了繁琐的数学推导,突出了最终的计算结果,结合具体的算例将设计方法通俗地呈现出来,便于读者理解和掌握。
为方便广大读者的使用,手册在具体内容的表述上,采用以图表为主的编写风格。这样既增加了手册的信息容量,更重要的是方便了读者的查阅使用,有利于提高设计人员的工作效率和设计速度。
为了进一步增加手册的承载容量和时效性,本版修订将部分篇章的内容放入二维码中,读者可以用手机扫描查看、下载打印或存储在PC端进行查看和使用。二维码内容主要涵盖以下几方面的内容:即将被废止的旧标准(新标准一旦正式颁布,会及时将二维码内容更新为新标准的内容);部分推荐产品及参数;其他相关内容。
4.通用性。本手册以通用的机械零部件和控制元器件设计、选用内容为主,主要包括机械设计基础资料、机械制图和几何精度设计、机械工程材料、机械通用零部件设计、机械传动系统设计、液压和气压传动系统设计、机构设计、机架设计、机械振动设计、智能装备系统设计、控制元器件和控制单元等,既适用于传统的通用机械零部件设计选用,又适用于智能化装备的整机系统设计开发,能够满足各类机械设计人员的工作需求。
5.准确性。本手册尽量采用原始资料,公式、图表、数据力求准确可靠,方法、工艺、技术力求成熟。所有材料、零部件和元器件、产品和工艺方面的标准均采用最新公布的标准资料,对于标准规范的编写,手册没有简单地照抄照搬,而是采取选用、摘录、合理编排的方式,强调其科学性和准确性,尽量避免差错和谬误。所有设计方法、计算公式、参数选用均经过长期检验,设计实例、各种算例均来自工程实际。手册中收录通用性强、标准化程度高的产品,供设计人员在了解企业实际生产品种、规格尺寸、技术参数,以及产品质量和用户的实际反映后选用。
6.全面性。本手册一方面根据机械设计人员的需要,按照“基本、常用、重要、发展”的原则选取内容,另一方面兼顾了制造企业和大型设计院两大群体的设计特点,即制造企业侧重基础性的设计内容,而大型的设计院、工程公司侧重于产品的选用。因此,本手册力求实现零部件设计与整机系统开发的和谐统一,促进机械设计与控制设计的有机融合,强调产品设计与工艺技术的紧密结合,重视工艺技术与选用材料的合理搭配,倡导结构设计与造型设计的完美统一,以全面适应新时代机械新产品设计开发的需要。
经过广大编审人员和出版社的不懈努力,新版《现代机械设计手册》将以崭新的风貌和鲜明的时代气息展现在广大机械设计工作者面前。值此出版之际,谨向所有给过我们大力支持的单位和各界朋友表示衷心的感谢!
主编
评论
还没有评论。