描述
开 本: 16开纸 张: 胶版纸包 装: 平装-胶订是否套装: 否国际标准书号ISBN: 9787122340481
The textbook is divided into eight chapters.In the
introduction,the basic concept of polymer,classification and nomenclature of
polymer,reaction type of polymer,development history of polymer and application
of polymer are introduced in brief.In the next six chapters,free radical polymerization,free
radical copolymerization,ionic polymerization,step polymerization,ring-opening
polymerization and chemical reactions of polymers are introduced in detail.The
implementation methods of polymerization are introduced systematically in the last
chapter.The new words and terminology are noted in Chinese in detail,and the
large exercises are attached at the end of each chapter,which is helpful for
the students who are new to polymer chemistry to study smoothly.
This book is used as the textbook for colleges and universities.It is suitable
for the major of Polymer Materials and Engineering,Material Chemistry,Material
Science and Engineering,New Energy Materials and Devices,New Energy Materials
and Engineering,Chemical Engineering and Technology,Applied Chemistry in
engineering,Chemistry,Organic Chemistry,Analytical Chemistry,Polymer Chemistry
and Polymer Physics in science,and Chemistry in normal colleges.It can also be
used as the reference for junior college,scientific researchers and production technicians.
《Polymer Chemistry(双语教学用)》共分8章。首先在绪论中介绍了聚合物的基本概念、聚合物的分类和命名、聚合物的反应类型、聚合物的发展历程、聚合物的应用等。接下来6章分别就自由基聚合、自由基共聚、离子聚合、逐步聚合、开环聚合、聚合物的化学反应进行详细介绍。*后1章较系统地介绍聚合实施方法。书中对专业生词和专业术语做了较详细的中文注解,另每章后都附有习题,有利于初接触到高分子化学的学生顺利学习。
本书适合作为高等院校教材,适用于工科的高分子材料与工程、材料化学、材料科学与工程、新能源材料与器件、新能源材料与工程、化学工程与工艺和应用化学专业,理科的化学、有机化学、分析化学、高分子化学及物理专业,师范院校的化学专业。也可供大专院校师生以及科研人员和生产技术人员参考。
Chapter 1 INTRODUCTION1
1.1BASIC CONCEPTS AND DEFINITIONS1
1.1.1Monomers and Polymers1
1.1.2Structural Unit and Repeating Unit2
1.1.3Dimers,Trimers and Oligomers3
1.1.4Linear Polymers3
1.1.5Branched Polymers4
1.1.6Crosslinked Polymers4
1.1.7Stars and Dendrimers4
1.1.8Ladder Polymers5
1.1.9Copolymers5
1.2AVERAGE MOLECULAR WEIGHT AND DISTRIBUTION7
1.3TYPES OF POLYMERS AND POLYMERIZATIONS9
1.3.1Condensation Reactions9
1.3.2Addition Reactions10
1.3.3Ring-opening Polymerizations10
1.4POLYMERIZATION MECHANISM11
1.4.1Step Polymerization11
1.4.2Chain Polymerization11
1.4.3Comparison of Step and Chain Polymerization12
1.5NOMENCLATURE OF POLYMERS13
1.5.1Nomenclature Based on Source13
1.5.2Nomenclature Based on Structure(Non-IUPAC)14
1.5.3Trade Name14
1.5.4IUPAC Structure-Based Nomenclature System15
1.6A BRIEF HISTORY OF SYNTHETIC POLYMERS16
1.6.11838-1930’s16
1.6.21930-1945’s17
1.6.31945-1960’s17
1.6.41960-1980’s18
1.6.51980-2000’s18
1.6.62000-2018’s19
1.6.7Prospect of Polymer Materials19
1.7HISTORY OF NOBEL PRIZES FOR POLYMER SCIENCE20
1.8APPLICATION OF POLYMERS20
Exercises1 21
Chapter 2 FREE-RADICAL POLYMERIZATION23
2.1INTRODUCE23
2.1.1Initiators24
2.1.2Monomers25
2.1.3Solvents and Systems26
2.2INITIATION27
2.2.1Initiation by Thermal Decomposition of Initiators27
2.2.2Initiation by Redox Reactions29
2.2.3Initiation by Photolytic and Ionizing Radiation29
2.2.4Reactions of Initiator Radicals with Monomers29
2.3RADICAL CHAIN PROPAGATION30
2.4CHAIN TRANSFER REACTIONS31
2.5FREE RADICAL CHAIN TERMINATION32
2.6KINECTICS OF FREE RADICAL POLYMERIZATION33
2.6.1Approximations34
2.6.2Steady-state Concentrations of the Propagating Radicals35
2.6.3Theoretic Rate of Polymerization36
2.7AVERAGE KINETIC CHAIN LENGTH39
2.8AVERAGE DEGREE OF POLYMERIZATION AND AVERAGE MOLECULAR WEIGHT40
2.9EFFECT OF CHAIN TRANSFER ON AVERAGE DEGREE OF POLYMERIZATION41
2.10DEPENDENCE OF THE DEGREE OF POLYMERIZATION ON TEMPERATURE43
2.11DISTRIBUTION OF MOLECULAR WEIGHT44
2.11.1Disproportionation Termination44
2.11.2Combination Termination45
2.12INHIBITOR AND RETARDER46
Exercises2 47
Chapter 3 FREE-RADICAL COPOLYMERIZATION51
3.1TYPES AND NAMENCLATURE OF COPOLYMERS51
3.2REACTIVITY RATIO AND COPOLYMER COMPOSITION EQUATION52
3.3COPOLYMERIZATION BEHAVIOR54
3.3.1Ideal Copolymerization54
3.3.2Alternating Copolymerization56
3.3.3Non-ideal Copolymerization56
3.3.4″Block” Copolymerization57
3.4EXPERIMENTAL DETERMINATION OF ACTIVITY RATIOS57
3.5VARIATION OF COPOLYMER COMPOSITION WITH CONVERSION58
3.6EFFECT OF MONOMER STRUCTURE ON REACTIVITY60
3.6.1Conjugation Effect60
3.6.2Polarity Effect60
3.6.3Steric Effect61
3.7Q-e EQUATIONS61
3.8DISTRIBUTION OF MONOMERS IN A COPOLYMER63
Exercises3 65
Chapter 4 IONIC POLYMERIZATION67
4.1ANIONIC POLYMERIZATION68
4.1.1Initiators for Anionic Polymerization68
4.1.2Monomers for Anionic Polymerization70
4.1.3Solvents70
4.1.4The Mechanism of Anionic Polymerization(General)71
4.1.5Living Polymers and Copolymerization72
4.2COORDINATION POLYMERIZATION73
4.2.1Ziegler-Natta Catalyst73
4.2.2Composition of the Catalyst74
4.2.3Polymerization Mechanism75
4.3CATIONIC POLYMERIZATION76
4.3.1Initiators for Cationic Polymerization76
4.3.2Monomers for Cationic Polymerization78
4.3.3The Mechanism of Cationic Polymerization78
4.3.4Special Characteristics of Classical Cationic Polymerizations80
4.4KINETICS OF IONIC POLYMERIZATION80
4.4.1Anionic Polymerization81
4.4.2Cationic Polymerization87
Exercises4 91
Chapter 5 STEP POLYMERIZATION93
5.1INTRODUCTION93
5.1.1Types of Condensation Reactions94
5.1.2Requirements for High Molecular Weight95
5.2SPECIFIC CONDENSATION POLYMERIZATIONS95
5.2.1Linear Polyesters95
5.2.2Branched and Crosslinked Polyesters96
5.2.3Polycarbonates97
5.2.4Polyamides(nylons)98
5.3KINETICS OF STEP POLYMERIZATION99
5.3.1Equal Reactivity of Functional Groups99
5.3.2Rate of Polymerization Reactions99
5.3.3Kinetics of Polyesterification100
5.4TIME DEPENDENCE OF THE AVERAGE DEGREE OF POLYMERIZATION103
5.5MOLECULAR WEIGHT DISTRIBUTIONS105
5.6EFFECT OF NONSTOICHIOMETRIC REACTANT RATIOS108
5.7BRANCHED AND CROSSLINKED CONDENSATION POLYMERS111
5.8THE METHOD OF STEP POLYMERIZATION114
5.8.1Melt Condensation Polymerization115
5.8.2Solution Polymerization116
5.8.3Interfacial Polycondensation116
5.8.4Solid Phase Polycondensation117
5.9RANDOM PREPOLYMERS AND STRUCTURE PREPOLYMERS118
5.9.1Random Performed Polymers118
5.9.2Structure Prepolymers119
Exercises5 122
Chapter 6 RING-OPENING POLYMERIZATION126
6.1INTRODUCTION126
6.2CHARACTERISTICS OF RING-OPENING POLYMERIZATION 126
6.3POLYMERIZATION ABILITY OF CYCLIC MONOMERS127
6.4THERMODYNAMICS OF RING-OPENING POLYMERIZATION OF CYCLOALKANES127
6.5THERMODYNAMIC AND KINETIC CHARACTERISTICS OF CYCLOALKANE POLYMERIZATION128
6.6IMPORTANT RING-OPENING POLYMERIZATION IN INDUSTRY130
6.6.1Cyclic Ether130
6.6.2Cationic Ring-opening Polymerization of Carbonyl Compounds and Acetals133
6.6.3Ring-opening Polymerization of Cyclic Amides134
6.6.4Cyclosiloxane137
Exercises6 138
Chapter 7 REACTIONS OF SYNTHETIC POLYMERS139
7.1REACTIONS INVOLVING THE MAIN CHAIN139
7.1.1Addition Reactions139
7.1.2Reactions that Generate Skeletal Unsaturation140
7.1.3Hydrolytic Chain Cleavage140
7.1.4Enzymatic Degradation of Synthetic Polymers141
7.1.5Oxidation Reactions142
7.1.6High Temperature Degradation Reactions143
7.1.7Electron Beam Depolymerization147
7.2REACTIONS INVOLVING THE SIDE GROUPS147
7.2.1Principles of Polymer Reactivity147
7.2.2Hydrolysis of Side Group Structures148
7.2.3Chloromethylation of Polystyrene150
7.3GRAFT POLYMER FORMATION151
7.4CROSS-LINKING REACTION152
7.5SURFACE REACTIONS OF POLYMERS153
7.5.1Surface Fluorination153
7.5.2Surface Nitrification and Sulfonation154
7.5.3Surface Oxidation154
Exercises7 155
Chapter 8 METHODS OF POLYMERIZATION156
8.1BULK (MASS) POLYMERIZATION156
8.2SOLUTION POLYMERIZATION157
8.3SUSPENSION POLYMERIZATION157
8.4EMULSION POLYMERIZATION159
8.4.1Description of Process160
8.4.2Quantitative Aspects168
8.4.3Other Characteristics of Emulsion Polymerization176
8.4.4Soap-Free Emulsion Polymerization179
8.4.5Inverse Emulsion Polymerization180
8.4.6Miniemulsion Polymerization181
8.4.7Microemulsion Polymerization181
8.4.8Seed Emulsion Polymerization181
8.4.9Core-shell Emulsion Polymerization182
8.4.10Dispersion Polymerization182
8.4.11Living Radical Polymerization182
Exercises8 184
REFERENCE185
Polymer chemistry is a compulsory basic course of
polymeric materials and engineering and interrelated specialities in
engineering colleges.It is also listed as a compulsory or optional course for
students majoring in science in universities of science and technology and chemistry
in teacher universities.In addition,many non-polymer majors are also engaged in
polymer research,production and application after graduation because of the
large production,variety,wide application and high economic benefits of
polymers.In particular,the internationalization of China’s development requires
that trained students can engage in scientific research,production technology
and management abroad.This is urgently required for a bilingual textbook or a
reference book with high value in English and Chinese.
There are many English textbooks for polymer chemistry in foreign
countries.Because there are so many local words and unfamiliar words,even
university teachers have difficulty in dealing with the skimming and
scanning.It is difficult to find suitable original English textbook for the
students in local universities in China to master professional vocabulary and
professional knowledge.Therefore,on the basis of our fifteen years′experience in bilingual teaching,a
bilingual textbook on polymer chemistry has been written to suit for local
universities in China.Try to be literal and easy to understand,and professional
words and new words are annotated in Chinese.To improve the readability and
applicability of the textbook,it offers opportunities for students from a
variety of backgrounds to gain basic knowledge,understanding and skills in
polymer materials.
In the teaching plan of polymer materials and engineering specialty,there are
courses such as polymer chemistry,polymer physics(structure and performance),fundamentals
of polymer molding and processing.In this case,the emphasis of polymer
chemistry should be put on the principle of polymerization,but relationship
between structure,properties and application should not be neglected.In the
introduction of this textbook,the basic concepts of polymers,molecular weight
and distribution of polymers,microstructure,classification of polymers,types of
polymerization reactions,nomenclature of polymers,and development history of
polymers are highlighted one by one in order to draw attention to them and
hopefully penetrate them into later chapters.When we need to know more about
these contents,we should refer to other textbooks or monographs.
From the point of view of polymer materials,the synthesis,structure,properties
and applications of polymers can be introduced according to the types of
polymers.This book,on the one hand,is classified according to polymerization
mechanism,kinetics and polymerization methods,and then discusses free radical
polymerization,free radical copolymerization,ionic polymerization(including
anionic polymerization,coordination polymerization and cationic
polymerization),step polymerization,chemical reactions of polymers and
polymerization methods in turn.On the other hand,ring-opening polymerization
includes anionic polymerization,cationic polymerization and step
polymerization,so it is written as an indepen-dent chapter.This will contribute
to deepen the problem.
The three chapters of free radical polymerization,freeradical copolymerization
and step polymerization are the major ones,and their theoretical system and
content are the most mature.At the same time,students should be aware that the
material literature in ionic po-lymerization and coordination polymerization
are very abundant,however,from the overall opinion,theoretical research is
still in immature,imperfect stage.Therefore,we only introduce the basic
concepts,basic principles and other basic knowledge in these chapters.In
general polymer chemistry textbooks,except for emulsion polymerization,the
other polymerization methods are very brief.Considering that there is not the
course of polymer production technology in many engineering colleges and
universities,and that polymerization mechanism and kinetics should be closely
related to practice,this book extends the content of polymerization
method(process)appropriately from polymerization reaction engineering,and gives
some examples.The chapter on chemical reactions of polymers,especially the
rapid development of functional polymers in recent years,covers a wide range of
topics.Each section of this chapter can be developed into an independent course
or monograph.Unfortunately,under the condition of limited space,we can only
comprehensively consider the content of each part,and make a brief introduction
not in-depth discussion.The purpose is to give students some ideas in order to
open up their horizons and broaden thinking.
The structure and form of olefin monomers have little change by chain
polymerization,but the properties of polymers are obviously
different.However,the monomers with functional groups can form condensate
polymers with different structures and properties after condensation or step
polymerization.Therefore,in the chapter of step polymerization,the syntheses of
many kinds of condensate polymers are introduced systematically through the
practical application on the mechanism of condensation polymerization and
polymerization methods.Such treatment can reflect the diversity of condensation
polymerization and supplement much knowledge about condensate polymers.
This book was written by Ming Zhou and Jialin Dai.Chapters 1-6 were written by
professor Zhou of Southwest Petroleum University.Chapters 7 and 8 were written
by professor Dai of Southwest Petroleum University.Professor Zhou revised the
whole textbook.Zhou’s postgraduates Yiping Chen,Yinghua Gu and Rongjun Yi
helped to change the format and handle words.
Ming Zhou
评论
还没有评论。