描述
开 本: 16开纸 张: 胶版纸包 装: 平装-胶订是否套装: 否国际标准书号ISBN: 9787121252501
内容简介
本书系统地介绍了纯距离目标运动分析的理论及应用等相关知识。全书共分10章,系统讨论了纯距离目标运动分析涉及的可观测性分析、目标定位与跟踪算法、单站机动航路优化、静止多站站址布局优化等基础问题,并对纯距离系统在水下声学传感器中的应用进行了论述。
目 录
第1 章 绪论 ················································································ 1
1.1 纯距离目标运动分析基本概念 ·············································· 1
1.2 纯距离目标运动分析的研究现状 ··········································· 4
1.2.1 可观测性分析的研究现状 ············································ 4
1.2.2 目标定位与跟踪算法的研究现状 ··································· 6
1.2.3 单观测站机动航路优化的研究现状 ································ 7
1.2.4 静止多观测站站址布局优化的研究现状 ·························· 7
1.2.5 基于纯距离的水下声学传感器网络节点自定位算法的研究现状 ························································ 8
1.2.6 基于纯距离的水下声学传感器网络目标跟踪算法的研究现状 ·································································
1.3 纯距离目标运动分析的研究热点 ··········································· 9
1.4 本书的组织结构 ······························································· 10
第2 章 单站纯距离系统可观测性分析 ·············································· 12
2.1 引言 ·············································································· 12
2.2 系统数学描述 ·································································· 13
2.2.1 直角坐标系下的系统数学描述 ····································· 13
2.2.2 极坐标系下的系统数学描述 ········································ 14
2.2.3 修正极坐标系下的系统数学描述 ·································· 15
2.3 系统可观测性定义 ···························································· 16
2.4 系统可观测分析 ······························································· 17
2.4.1 观测站静止、目标静止时的系统可观测性分析 ················ 18
2.4.2 观测站静止、目标匀速直线运动时的系统可观测性分析 ···· 18
2.4.3 观测站静止、目标匀加速直线运动时的系统可观测性分析 ··· 21
2.4.4 观测站匀速直线运动、目标静止时的系统可观测性分析 ···· 21
2.4.5 观测站匀速直线运动、目标匀速直线运动时的系统可观测性分析 ·························································· 24
2.4.6 观测站匀速直线运动、目标匀加速直线运动时的系统可观测性分析 ·························································· 25
2.4.7 观测站匀加速直线运动、目标静止时的可观测性分析 ······· 25
2.4.8 观测站匀加速运动、目标匀速直线运动时的可观测分析 ···· 26
2.4.9 匀加速运动观测站、匀加速直线运动目标的可观测分析 ···· 27
2.4.10 其他结论 ······························································ 31
2.5 单站纯距离系统与单站纯方位系统可观测性比较 ······················· 32
第3 章 单站纯距离系统目标定位与跟踪算法研究 ······························· 33
3.1 引言 ·············································································· 33
3.2 系统数学模型 ·································································· 34
3.3 基于最小二乘原理的目标参数估计算法 ·································· 36
3.3.1 递推格式的目标参数估计算法 ····································· 36
3.3.2 基于全局收敛策略的目标参数估计算法 ························· 40
3.4 基于极大似然原理的目标参数估计算法 ·································· 48
3.4.1 单站纯距离系统的极大似然估计 ·································· 48
3.4.2 基于全局收敛策略的改进算法 ····································· 51
3.4.3 仿真试验及分析 ······················································· 52
3.5 UKF 算法的基本原理 ························································· 57
3.5.1 UT 变换 ································································· 57
3.5.2 标准UKF 算法 ························································ 58
3.5.3 迭代UKF 算法 ························································ 59
3.5.4 仿真试验及分析 ······················································· 60
3.6 自适应迭代UKF 算法 ························································ 63
3.6.1 自适应迭代UKF 算法步骤 ········································· 63
3.6.2 仿真试验及分析 ······················································· 64
第4 章 单站机动航路优化研究 ······················································· 70
4.1 引言 ·············································································· 70
4.2 观测站匀速直线一次转向机动时的可观测度分析 ······················ 71
4.2.1 可观测度的定义 ······················································· 71
4.2.2 仿真试验及分析 ······················································· 72
4.3 单站纯距离测量模型的CRLB ·············································· 74
4.3.1 定位与跟踪误差下限 ················································· 74
4.3.2 单站纯距离测量模型CRLB 计算 ·································· 76
4.4 观测站机动航路优化研究 ··················································· 78
4.4.1 航路优化问题的提出 ················································· 78
4.4.2 匀速直线一次转向机动优化航路 ·································· 79
4.4.3 匀速转弯机动优化航路 ·············································· 82
4.5 航路优化的方法 ······························································· 85
第5 章 多站纯距离系统可观测性分析 ·············································· 87
5.1 引言 ····················
1.1 纯距离目标运动分析基本概念 ·············································· 1
1.2 纯距离目标运动分析的研究现状 ··········································· 4
1.2.1 可观测性分析的研究现状 ············································ 4
1.2.2 目标定位与跟踪算法的研究现状 ··································· 6
1.2.3 单观测站机动航路优化的研究现状 ································ 7
1.2.4 静止多观测站站址布局优化的研究现状 ·························· 7
1.2.5 基于纯距离的水下声学传感器网络节点自定位算法的研究现状 ························································ 8
1.2.6 基于纯距离的水下声学传感器网络目标跟踪算法的研究现状 ·································································
1.3 纯距离目标运动分析的研究热点 ··········································· 9
1.4 本书的组织结构 ······························································· 10
第2 章 单站纯距离系统可观测性分析 ·············································· 12
2.1 引言 ·············································································· 12
2.2 系统数学描述 ·································································· 13
2.2.1 直角坐标系下的系统数学描述 ····································· 13
2.2.2 极坐标系下的系统数学描述 ········································ 14
2.2.3 修正极坐标系下的系统数学描述 ·································· 15
2.3 系统可观测性定义 ···························································· 16
2.4 系统可观测分析 ······························································· 17
2.4.1 观测站静止、目标静止时的系统可观测性分析 ················ 18
2.4.2 观测站静止、目标匀速直线运动时的系统可观测性分析 ···· 18
2.4.3 观测站静止、目标匀加速直线运动时的系统可观测性分析 ··· 21
2.4.4 观测站匀速直线运动、目标静止时的系统可观测性分析 ···· 21
2.4.5 观测站匀速直线运动、目标匀速直线运动时的系统可观测性分析 ·························································· 24
2.4.6 观测站匀速直线运动、目标匀加速直线运动时的系统可观测性分析 ·························································· 25
2.4.7 观测站匀加速直线运动、目标静止时的可观测性分析 ······· 25
2.4.8 观测站匀加速运动、目标匀速直线运动时的可观测分析 ···· 26
2.4.9 匀加速运动观测站、匀加速直线运动目标的可观测分析 ···· 27
2.4.10 其他结论 ······························································ 31
2.5 单站纯距离系统与单站纯方位系统可观测性比较 ······················· 32
第3 章 单站纯距离系统目标定位与跟踪算法研究 ······························· 33
3.1 引言 ·············································································· 33
3.2 系统数学模型 ·································································· 34
3.3 基于最小二乘原理的目标参数估计算法 ·································· 36
3.3.1 递推格式的目标参数估计算法 ····································· 36
3.3.2 基于全局收敛策略的目标参数估计算法 ························· 40
3.4 基于极大似然原理的目标参数估计算法 ·································· 48
3.4.1 单站纯距离系统的极大似然估计 ·································· 48
3.4.2 基于全局收敛策略的改进算法 ····································· 51
3.4.3 仿真试验及分析 ······················································· 52
3.5 UKF 算法的基本原理 ························································· 57
3.5.1 UT 变换 ································································· 57
3.5.2 标准UKF 算法 ························································ 58
3.5.3 迭代UKF 算法 ························································ 59
3.5.4 仿真试验及分析 ······················································· 60
3.6 自适应迭代UKF 算法 ························································ 63
3.6.1 自适应迭代UKF 算法步骤 ········································· 63
3.6.2 仿真试验及分析 ······················································· 64
第4 章 单站机动航路优化研究 ······················································· 70
4.1 引言 ·············································································· 70
4.2 观测站匀速直线一次转向机动时的可观测度分析 ······················ 71
4.2.1 可观测度的定义 ······················································· 71
4.2.2 仿真试验及分析 ······················································· 72
4.3 单站纯距离测量模型的CRLB ·············································· 74
4.3.1 定位与跟踪误差下限 ················································· 74
4.3.2 单站纯距离测量模型CRLB 计算 ·································· 76
4.4 观测站机动航路优化研究 ··················································· 78
4.4.1 航路优化问题的提出 ················································· 78
4.4.2 匀速直线一次转向机动优化航路 ·································· 79
4.4.3 匀速转弯机动优化航路 ·············································· 82
4.5 航路优化的方法 ······························································· 85
第5 章 多站纯距离系统可观测性分析 ·············································· 87
5.1 引言 ····················
前 言
通过获取运动目标的距离信息,并利用这些随时间变化的距离序列来实时估计目标运动参数的技术,称为纯距离目标运动分析(Range-only TargetMotion Analysis,RTMA)。随着无线传感器网络的不断发展,纯距离目标运动分析在舰艇雷达组网定位、声呐浮标搜潜、舰炮射击协同式检靶等领域中得到越来越广泛的应用。由于纯距离系统本质上的强非线性以及受到应用领域中观测条件的限制,因此,关于纯距离系统的可观测条件、目标定位与跟踪算法、单站机动航路优化、静止多站站址布局优化的理论研究成果很少,尚未形成完整的体系。本书内容正是基于此背景展开的,将纯距离目标运动分析划分为单观测站和多观测站问题,开展系统可观测性、目标定位与跟踪算法、单站机动航路优化、静止多站站址布局优化的研究,丰富了这一领域的理论研究成果,同时围绕纯距离系统在水下声学传感器中的应用进行了论述。
本书由10 章组成,主要内容如下:
第1 章为绪论。介绍了纯距离目标运动分析的概念、研究现状、研究热
点及本书的组织结构。
第2 章研究了单站纯距离系统的可观测性问题。建立单站纯距离系统的数学模型,给出了可观测性定义,分析观测站与目标在不同运动规律下的可观测性条件。
第3 章研究了单站纯距离系统目标定位与跟踪算法问题。从适用性的角度出发,分别给出了基于最小二乘原理、极大似然估计原理、无迹卡尔曼滤波的改进算法。
第4 章研究了单站机动航路优化问题。采用可观测度及几何定位散布精纯距离目标运动分析及应用度GDOP 作为衡量目标定位跟踪精度的指标,从全局寻优与单步局部寻优角度分析了观测站在一次转向航路和匀速转弯航路时的优化航路。
第5 章研究了多站纯距离系统的可观测性问题。建立了多站纯距离系统的数学模型,分析了影响多站纯距离系统可观测性的因素,并与多站纯方位系统、多站距离差系统可观测性条件进行了比较。
第6 章研究了多站纯距离系统目标定位与跟踪算法问题。从适用性的角度出发,给出了“蛙跳”算法、集中融合式定位算法、基于最小二乘原理的线性迭代法与全局收敛迭代算法,以及基于简化入侵式野草优化理论的改进粒
子滤波算法。
第7 章研究了静止多站站址布局的优化问题。通过合理布局多观测站的几何位置,在观测站数量受限的情况下,建立了站址布局优化模型,提高了对目标的定位跟踪精度。
第8 章研究了纯距离在水下声学传感器网络节点定位中的应用问题。
第9 章研究了纯距离在水下声学传感器网络目标跟踪中的应用问题。
第10 章设计了基于水下声学传感器网络的目标跟踪原型系统。
本书在编写过程中,得到了各级领导和机关业务部门的关心和支持。此外,电子工业出版社的支持及指导,为本书出版创造了许多便利条件,在此一并表示衷心的感谢。
在本书的编写过程中,参阅了许多著作和其他参考文献,在此谨向这些材料的原著作者表示诚挚的谢意。由于作者水平有限,书中难免存在一些疏漏和不足,敬请批评、指正。
编著者
2018 年9 月
本书由10 章组成,主要内容如下:
第1 章为绪论。介绍了纯距离目标运动分析的概念、研究现状、研究热
点及本书的组织结构。
第2 章研究了单站纯距离系统的可观测性问题。建立单站纯距离系统的数学模型,给出了可观测性定义,分析观测站与目标在不同运动规律下的可观测性条件。
第3 章研究了单站纯距离系统目标定位与跟踪算法问题。从适用性的角度出发,分别给出了基于最小二乘原理、极大似然估计原理、无迹卡尔曼滤波的改进算法。
第4 章研究了单站机动航路优化问题。采用可观测度及几何定位散布精纯距离目标运动分析及应用度GDOP 作为衡量目标定位跟踪精度的指标,从全局寻优与单步局部寻优角度分析了观测站在一次转向航路和匀速转弯航路时的优化航路。
第5 章研究了多站纯距离系统的可观测性问题。建立了多站纯距离系统的数学模型,分析了影响多站纯距离系统可观测性的因素,并与多站纯方位系统、多站距离差系统可观测性条件进行了比较。
第6 章研究了多站纯距离系统目标定位与跟踪算法问题。从适用性的角度出发,给出了“蛙跳”算法、集中融合式定位算法、基于最小二乘原理的线性迭代法与全局收敛迭代算法,以及基于简化入侵式野草优化理论的改进粒
子滤波算法。
第7 章研究了静止多站站址布局的优化问题。通过合理布局多观测站的几何位置,在观测站数量受限的情况下,建立了站址布局优化模型,提高了对目标的定位跟踪精度。
第8 章研究了纯距离在水下声学传感器网络节点定位中的应用问题。
第9 章研究了纯距离在水下声学传感器网络目标跟踪中的应用问题。
第10 章设计了基于水下声学传感器网络的目标跟踪原型系统。
本书在编写过程中,得到了各级领导和机关业务部门的关心和支持。此外,电子工业出版社的支持及指导,为本书出版创造了许多便利条件,在此一并表示衷心的感谢。
在本书的编写过程中,参阅了许多著作和其他参考文献,在此谨向这些材料的原著作者表示诚挚的谢意。由于作者水平有限,书中难免存在一些疏漏和不足,敬请批评、指正。
编著者
2018 年9 月
评论
还没有评论。