描述
开 本: 24开纸 张: 胶版纸包 装: 平装-胶订是否套装: 否国际标准书号ISBN: 9787519267759
- 作者沃尔夫冈·泡利是诺贝尔物理学奖得主,量子力学和原子物理学的创始人之一。
- 全套“泡利物理学讲义”包括《电动力学》《光学和电子论》《热力学和气体分子运动论》《统计力学》《波动力学》《场量子化选讲》《相对论》《量子力学的普遍原理》和《泡利物理哲学文集》9卷,涵盖了近代物理的方方面面,是一套内容严谨、精练、极具特色的理论物理学经典教材,也是物理爱好者提高物理水平的极佳读物。
- 泡利对科学基本问题具有极深刻的洞察力和准确的评判能力,这种能力对当时原子物理学和量子力学的发展产生了积极的影响,这种能力也体现在泡利的每一本著作中,内容简洁,直击物理的核心,而非迷失在繁琐的数学推导中。阅读这套书也可以让读者体会到物理学大师是怎样表达和讲授理论物理学概念的。
此书是世界图书出版公司出版的9卷本“泡利物理学讲义”中的第7卷,主题为相对论。沃尔夫冈·泡利是20世纪卓越的理论物理学家,1945年诺贝尔物理学奖得主,他在原子物理学和量子力学领域做出了重要贡献,发现了“泡利不相容原理”,建立了“中微子”假说,提出了二分量波函数的概念和著名的泡利自旋矩阵,并在量子场论、固体物理等领域都做了很多杰出的工作。泡利去世后,他晚年的助手查尔斯·恩斯教授编辑修订了他生前在苏黎世联邦理工学院的授课讲义的英文版,分6卷,分别为《电动力学》《光学和电子论》《热力学和气体分子运动论》《统计力学》《波动力学》和《场量子化选讲》,英文版由The MIT Press出版。泡利年轻的时候还写过两篇重要的长达数百页的综述长文《相对论》和《量子力学的普遍原理》,直至今日仍是相对论与量子力学领域重要的经典文献。1921年,泡利为德国的《数学科学百科全书》撰写了关于相对论的长篇综述文章,爱因斯坦阅读后评价道:“任何该领域的专家都不会相信,该文出自一个年仅21岁的青年人之手,作者在文中显示出来的对这个领域的理解力、熟练的数学推导能力、对物理深刻的洞察力、使问题明晰的能力、系统的表述、对语言的把握、对该问题的完整处理及对其评价,使任何一个人都会感到羡慕。”1933年,泡利又为德国的《物理百科全书》撰写了关于量子力学的长篇综述文章,很快也成为经典。这两篇综述长文后来都以单行本的方式独立出版。在泡利生命的*后一年,他又对两书进行了全面修订,英文版分别由Pergamon Press和Springer-Verlag再次出版。我们将这两本书作为“泡利物理学讲义”的第7卷和第8卷一起出版。1994年,Springer-Verlag又出版了同样由泡利晚年助手查尔斯·恩斯教授编辑的《泡利物理哲学文集》,此书包含了泡利撰写的关于空间、时间与因果性、对称、泡利不相容原理和中微子等的21篇重在阐述科学思想与哲学的文章和演讲稿。我们将此书作为“泡利物理学讲义”的第9卷。这套“泡利物理学讲义”对高等院校的学生与研究人员深刻理解物理原理会有极大的帮助。
Preface by W. Pauli
Preface by A. Sommerfeld
Bibliography
Part 1. The Foundations of the Special Theory of Relativity
- Historical Background (Lorentz, Poincaré, Einstein)
- The Postulate of Relativity
- The Postulate of the Constancy of the Velocity of Light. Ritz’s and Related Theories
- The Relativity of Simultaneity. Derivation of the Lorentz Transformation from the Two Postulates. Axiomatic Nature of the Lorentz Transformation
- Lorentz Contraction and Time Dilatation
- Einstein’s Addition Theorem for Velocities and Its Application to Aberration and the Drag Coefficient. The Doppler Effect
Part 2. Mathematical Tools
- The Four-Dimensional Space-Time World (Minkowski)
- More General Transformation Groups
- Tensor Calculus for Affine Transformations
- Geometrical Meaning of the Contravariant and Covariant Components of a Vector
- “Surface” and “Volume” Tensors. Four-Dimensional Volumes
- Dual Tensors
- Transition to Riemannian Geometry
- Parallel Displacement of a Vector
- Geodesic Lines
- Space Curvature
- Riemannian Coordinates and Their Applications
- The Special Cases of Euclidean Geometry and of Constant Curvature
- The Integral Theorems of Gauss and Stokes in a Four-Dimensional Riemannian Manifold
- Derivation of Invariant Differential Operations, Using Geodesic Components
- Affine Tensors and Free Vectors
- Reality Relations
- Infinitesimal Coordinate Transformations and Variational Theorems
Part 3. Special Theory of Relativity. Further Elaborations
- Kinematics
- Four-Dimensional Representation of the Lorentz Transformation
- The Addition Theorem for Velocities
- Transformation Law for Acceleration. Hyperbolic Motion
- Electrodynamics
- Conservation of Charge. Four-Current Density
- Covariance of the Basic Equations of Electron Theory
- Ponderomotive Forces. Dynamics of the Electron
- Momentum and Energy of the Electromagnetic Field. Differential and Integral Forms of the Conservation Laws
- The Invariant Action Principle of Electrodynamics
- Applications to Special Cases
- Minkowski’s Phenomenological Electrodynamics of Moving Bodies
- Electron-Theoretical Derivations
- Energy-Momentum Tensor and Ponderomotive Force in Phenomenological Electrodynamics. Joule Heat
- Applications of the Theory
- Mechanics and General Dynamics
- Equation of Motion. Momentum and Kinetic Energy
- Relativistic Mechanics on a Basis Independent of Electrodynamics
- Hamilton’s Principle in Relativistic Mechanics
- Generalized Coordinates. Canonical Form of the Equations of Motion
- The Inertia of Energy
- General Dynamics
- Transformation of Energy and Momentum of a System in the Presence of External Forces
- Applications to Special Cases. Trouton and Noble’s Experiments
- Hydrodynamics and Theory of Elasticity
- Thermodynamics and Statistical Mechanics
- Behaviour of the Thermodynamical Quantities Under a Lorentz Transformation
- The Principle of Least Action
- The Application of Relativity to Statistical Mechanics
- Special Cases
Part 4. General Theory of Relativity
- Historical Review, Up to Einstein’s Paper of 1916
- General Formulation of the Principle of Equivalence. Connection Between Gravitation and Metric
- The Postulate of the General Covariance of the Physical Laws
- Simple Deductions from the Principle of Equivalence
- Influence of the Gravitational Field on Material Phenomena
- The Action Principles for Material Processes in the Presence of Gravitational Fields
- The Field Equations of Gravitation
- Derivation of the Gravitational Equations from a Variational Principle
- Comparison with Experiment
- Other Special, Rigorous, Solutions for the Statical Case
- Einstein’s General Approximative Solution and Its Applications
- The Energy of the Gravitational Field
- Modifications of the Field Equations. Relativity of Inertia and the Space-Bounded Universe
Part 5. Theories on the Nature of Charged Elementary Particles
- The Electron and the Special Theory of Relativity
- Mie’s Theory
- Weyl’s Theory
- Einstein’s Theory
- General Remarks on the Present State of the Problem of Matter
Supplementary Notes
Author Index
Subject Index
评论
还没有评论。