描述
开 本: 16开纸 张: 胶版纸包 装: 平装-胶订是否套装: 否国际标准书号ISBN: 9787115529916丛书名: 深度学习系列
1.国内知识图谱界领军人物、文因互联CEO鲍捷作序。国内外产业界和学术界大咖鼎力推荐 2.本书编写简明扼要,是美国常青藤名校布朗大学的教材。本书的每一章都包括了一个编程项目和一些书面练习,并附上了参考资料,可供读者进一步阅读。 3.人工智能经典入门书,基于Tensorflow编写,以项目为导向,通过一系列的编程任务,向读者介绍了热门的人工智能应用,包括计算机视觉、自然语言处理和强化学习等。 4.做中学。作者在前言中写道:“对我而言,学习计算机科学的*好方法,就是坐下来写程序。”本书正是采用了这种方法。
《深度学习导论》讲述了前馈神经网络、Tensorflow、卷积神经网络、词嵌入与循环神经网络、序列到序列学习、深度强化学习、无监督神经网络模型等深度学习领域的基本概念和技术,通过一系列的编程任务,向读者介绍了热门的人工智能应用,包括计算机视觉和自然语言处理等。 本书编写简明扼要,理论联系实践,每一章都包含习题以及补充阅读的参考文献。本书既可作为高校人工智能课程的教学用书,也可供从业者入门参考。 本书要求读者熟悉线性代数、多元微积分、概率论与数理统计知识,另外需要读者了解Python编程。
第 1章 前馈神经网络 1
1.1 感知机 3
1.2 神经网络的交叉熵损失函数 7
1.3 导数与随机梯度下降 11
1.4 编写程序 15
1.5 神经网络的矩阵表示 17
1.6 数据独立性 19
1.7 参考文献和补充阅读 20
1.8 习题 21
第 2章 Tensorflow 23
2.1 预备知识 23
2.2 TF程序 26
2.3 多层神经网络 31
2.4 其他方面 34
2.4.1 检查点 34
2.4.2 tensordot 35
2.4.3 TF变量的初始化 37
2.4.4 TF图创建的简化 39
2.5 参考文献和补充阅读 40
2.6 习题 40
第3章 卷积神经网络 43
3.1 滤波器、步长和填充 43
3.2 一个简单的TF卷积例子 49
3.3 多层卷积 51
3.4 卷积细节 54
3.4.1 偏置 54
3.4.2 卷积层 55
3.4.3 池化运算(pooling) 55
3.5 参考文献和补充阅读 56
3.6 习题 57
第4章 词嵌入与循环神经网络 59
4.1 语言模型的词嵌入 59
4.2 构建前馈语言模型 63
4.3 改进前馈语言模型 65
4.4 过拟合 66
4.5 循环网络 69
4.6 长短期记忆模型 75
4.7 参考文献和补充阅读 78
4.8 习题 78
第5章 序列到序列学习 81
5.1 seq2seq模型 82
5.2 编写一个seq2seq MT程序 84
5.3 seq2seq中的注意力机制 87
5.4 多长度seq2seq 90
5.5 编程练习 91
5.6 参考文献和补充阅读 93
5.7 习题 94
第6章 深度强化学习 97
6.1 值迭代 98
6.2 Q学习 101
6.3 深度Q学习基础 103
6.4 策略梯度法 106
6.5 行动者-评论家方法 112
6.6 经验回放 114
6.7 参考文献和补充阅读 115
6.8 习题 116
第7章 无监督神经网络模型 119
7.1 基本自编码 119
7.2 卷积自编码 122
7.3 变分自编码 126
7.4 生成式对抗网络 132
7.5 参考文献和补充阅读 137
7.6 习题 137
附录A 部分习题答案 139
附录B 参考文献 143
附录C 索引 147
本书赞誉 151
“我们有多种关于深度学习的图书可供选择:由专家学者撰写的理论图书,以及由程序员撰写的实践图书。而这本书融合了两者的优势。Charniak是一位杰出的学术研究者,他经历了人工智能的每一个阶段,并且经常作为领导者开创一个新的阶段。除了研究者这个身份,他还是一个活跃的程序员,通过编写程序来理解人工智能。在这本精心撰写的书中,Charniak向你展示了他所理解的东西,给出了颇有见地的结论,并指导你一步一步地理解代码。” —— Peter Norvig,谷歌研究总监 “这是一本精彩绝伦的书,它填补
评论
还没有评论。