fbpx

[email protected]

购物车

 查看订单

  • 我的帐户
东东购 | EasternEast
  • 中文书店
    • 畅销排行榜
      • 小说 畅销榜
      • 童书 畅销榜
      • 外语畅销榜
      • 管理畅销榜
      • 法律畅销榜
      • 青春文学畅销榜
    • 热门分类
      • 社会小说
      • 成功/励志 畅销榜
      • 人物传记
      • 大陆原创
      • 绘本童书
      • 影视小说
    • 文学推荐
      • 文集
      • 戏剧
      • 纪实文学
      • 名家作品
      • 民间文学
      • 中国现当代随笔
    • 新书热卖榜
      • 小说 新书热卖榜
      • 青春文学 新书热卖榜
      • 童书 新书热卖榜
      • 管理 新书热卖榜
      • 成功/励志 新书热卖榜
      • 艺术 新书热卖榜
  • 精选分类
    • 小说
    • 保健养生
    • 烹饪/美食
    • 风水/占卜
    • 青春文学
    • 童书
    • 管理
    • 成功/励志
    • 文学
    • 哲学/宗教
    • 传记
    • 投资理财
    • 亲子家教
    • 动漫/幽默
    • 法律 Legal
    • 经济 Economics
    • 所有分类
  • 关于东东
  • 帮我找书
搜索
首页计算机/网络人工智能深度学习(影印版)

深度学习(影印版)

作者:Josh,Patterson 著 出版社:东南大学出版社 出版时间:2018年07月 

ISBN: 9787564175160
年中特卖用“SALE15”折扣卷全场书籍85折!可与三本88折,六本78折的优惠叠加计算!全球包邮!
trust badge

EUR €58.99

类别: 人工智能 SKU:5d8487605f98491045416c5f 库存: 有现货
  • 描述
  • 评论( 0 )

描述

开 本: 16开纸 张: 胶版纸包 装: 平装-胶订是否套装: 否国际标准书号ISBN: 9787564175160

内容简介

在引入开源Deeplearning4j(DL4J)库用于开发产品级工作流之前,作者Josh Patterson和Adam Gibson介绍了深度学习——调优、并行化、向量化及建立管道——任何库所需的基础知识。通过真实的案例,你将学会在Spark和Hadoop上用DL4J训练深度网络架构并运行深度学习工作流的方法和策略。

* 深入机器学习一般概念,特别是深度学习相关概念
* 理解深度网络如何从神经网络基础演化
* 探索主流深度网络架构,包括Convolutional和Recurrent
* 学习如何将特定的深度网络映射到具体的问题
* 一般神经网络和特定深度网络架构调优基础概览
* 为不同的数据类型使用DL4J的工作流工具DateVec实现向量化
* 学习如何在Spark和Hadoop本地使用DL4J

作者简介

Josh Patterson目前是Skymind的现场工程副总裁。他此前曾在Cloudera担任高级解决方案架构师,在Tennessee Valley Authority担任机器学习和分布式系统工程师。

Adam Gibson是Skymind的CTO。Adam曾与财富500强企业、对冲基金、公关公司和创投加速器等机构合作,创建它们的机器学习项目。他在帮助这些公司处理和阐释大规模实时数据方面颇具深厚经验。

目  录
Preface
1. A Review of Machine Learning
The Learning Machines
How Can Machines Learn?
Biological Inspiration
What Is Deep Learning?
Going Down the Rabbit Hole
Framing the Questions
The Math Behind Machine Learning: Linear Algebra
Scalars
Vectors
Matrices
Tensors
Hyperplanes
Relevant Mathematical Operations
Converting Data Into Vectors
Solving Systems of Equations
The Math Behind Machine Learning: Statistics
Probability
Conditional Probabilities
Posterior Probability
Distributions
Samples Versus Population
Resampling Methods
Selection Bias
Likelihood
How Does Machine Learning Work?
Regression
Classification
Clustering
Underfitting and Overfitting
Optimization
Convex Optimization
Gradient Descent
Stochastic Gradient Descent
Quasi-Newton Optimization Methods
Generative Versus Discriminative Models
Logistic Regression
The Logistic Function
Understanding Logistic Regression Output
Evaluating Models
The Confusion Matrix
Building an Understanding of Machine Learning

2. Foundations of Neural Networks and Deep Learning.
Neural Networks
The Biological Neuron
The Perceptron
Multilayer Feed-Forward Networks
Training Neural Networks
Backpropagation Learning
Activation Functions
Linear
Sigmoid
Tanh
Hard Tanh
Softmax
Rectified Linear
Loss Functions
Loss Function Notation
Loss Functions for Regression
Loss Functions for Classification
Loss Functions for Reconstruction
Hyperparameters
Learning Rate
Regularization
Momentum
Sparsity

3. Fundamentals of Deep Networks
4. Major Architectures of Deep Networks
5. Building Deep Networks
6. Tuning Deep Networks
7. Tuning Specific Deep Networks Architecture
8. Vectorization
9. Using Deep Learning and DL4J on Spark
A. What Is Artificial Intelligence?
B. RL4J and Reinforcement Learning
C. Numbers Everyone Should Know
D. Neural Networks and Backpropagation: A Mathematical Approach
E. Using the ND4J API

抢先评论了 “深度学习(影印版)” 取消回复

评论

还没有评论。

相关产品

加入购物车

高等光学仿真(MATLAB版)–光波导,激光(第2版)

EUR €31.99
加入购物车

Python深度学习

EUR €68.99
评分 3.67 / 5
加入购物车

揭秘深度强化学习 机器学习 神经网络与深度学习人工智能丛书 AlphaGo核心算法揭秘 C语言描述机器深度学习 应用于机器人决策 量化投资 自动驾驶

EUR €53.99
加入购物车

机器人学中的状态估计(人工智能与机器人系列)

EUR €55.99

东东购的宗旨是服务喜爱阅读中文书籍的海外人民,提供一个完善的购书平台,让国人不论何时何地都能沉浸在书香之中,读着熟悉的中文字,回忆着家乡的味道。


安全加密结账 安心网络购物 支持Paypal付款

常见问题

  • 货物配送
  • 退换货政策
  • 隐私政策
  • 联盟营销

客户服务

  • 联系东东
  • 关于东东
  • 帮我找书
  • 货物追踪
  • 会员登入

订阅最新的优惠讯息和书籍资讯

选择币别

EUR
USD
CAD
AUD
NZD
NOK
GBP
CHF
SEK
CNY
UAH
ILS
SAR
MXN
KRW
MYR
SGD
HUF
TRY
JPY
HKD
TWD
facebookinstagram
©2020 东东购 EasternEast.com

限时特卖:用“SALE15”优惠券全场书籍85折!可与三本88折,六本78折的优惠叠加计算。 忽略