描述
开 本: 16开纸 张: 胶版纸包 装: 平装是否套装: 否国际标准书号ISBN: 9787564156268
内容简介
本书包括函数与极限、一元微积分、多元微积分、无穷级数、常微分方程等内容。本书突出基本概念基本公式与理论知识的应用,全书结构严谨、逻辑清晰、说理浅显、通俗易懂. 例题较多且有一定梯度。
目 录
7向量代数与空间解析几何
7.1向量及其线性运算
7.1.1 空间直角坐标系
7.1.2 空间两点间的距离
7.1.3 向量的概念
7.1.4 向量的线性运算
7.1.5 向量在轴上的投影
7.1.6 向量的分解与向量的坐标
7.1.7 向量的模和方向余弦
习题7.1
7.2向量的数量积、向量积与混合积
7.2.1 向量的数量积
7.2.2 向量的向量积
7.2.3 向量的混合积
习题7.2
7.3空间平面及其方程
7.3.1 曲面方程的概念
7.3.2平面的方程
7.3.3 两平面之间的位置关系
7.3.4 点到平面的距离
习题7.3
7.4空间直线及其方程
7.4.1 空间直线的方程
7.4.2 两直线之间的位置关系
7.4.3直线与平面之间的位置关系
7.4.4 点到直线之间的距离
7.4.5 平面束
习题7.4
7.5常见的曲面及其方程
7.5.1旋转曲面
7.5.2 柱面
7.5.3椭球面
7.5.4单叶双曲面
7.5.5双叶双曲面
7.5.6椭圆抛物面
7.5.7双曲抛物面(马鞍面)
习题7.5
7.6空间曲线及其方程
7.6.1 空间曲线的一般方程
7.6.2 空间曲线的参数方程
7.6.3 空间曲线在坐标面上的投影
习题7.6
总复习题7
8多元函数微分法及其应用
8.1多元函数
8.1.1 平面点集与n维空间
8.1.2多元函数的概念
8.1.3二元函数的极限
8.1.4二元函数的连续性
8.1.5 闭区域上多元连续函数的性质
习题8.1
8.2偏导数
8.2.1偏导数的定义
8.2.2偏导数的几何意义
8.2.3高阶偏导数
习题8.2
8.3全微分
8.3.1全微分的概念
……
9重积分
10曲线积分与曲面积分
11微分方程
12无穷级数
附录Ⅴ MATLAB软件简介(下)
附录Ⅵ 常见曲面
参考答案
7.1向量及其线性运算
7.1.1 空间直角坐标系
7.1.2 空间两点间的距离
7.1.3 向量的概念
7.1.4 向量的线性运算
7.1.5 向量在轴上的投影
7.1.6 向量的分解与向量的坐标
7.1.7 向量的模和方向余弦
习题7.1
7.2向量的数量积、向量积与混合积
7.2.1 向量的数量积
7.2.2 向量的向量积
7.2.3 向量的混合积
习题7.2
7.3空间平面及其方程
7.3.1 曲面方程的概念
7.3.2平面的方程
7.3.3 两平面之间的位置关系
7.3.4 点到平面的距离
习题7.3
7.4空间直线及其方程
7.4.1 空间直线的方程
7.4.2 两直线之间的位置关系
7.4.3直线与平面之间的位置关系
7.4.4 点到直线之间的距离
7.4.5 平面束
习题7.4
7.5常见的曲面及其方程
7.5.1旋转曲面
7.5.2 柱面
7.5.3椭球面
7.5.4单叶双曲面
7.5.5双叶双曲面
7.5.6椭圆抛物面
7.5.7双曲抛物面(马鞍面)
习题7.5
7.6空间曲线及其方程
7.6.1 空间曲线的一般方程
7.6.2 空间曲线的参数方程
7.6.3 空间曲线在坐标面上的投影
习题7.6
总复习题7
8多元函数微分法及其应用
8.1多元函数
8.1.1 平面点集与n维空间
8.1.2多元函数的概念
8.1.3二元函数的极限
8.1.4二元函数的连续性
8.1.5 闭区域上多元连续函数的性质
习题8.1
8.2偏导数
8.2.1偏导数的定义
8.2.2偏导数的几何意义
8.2.3高阶偏导数
习题8.2
8.3全微分
8.3.1全微分的概念
……
9重积分
10曲线积分与曲面积分
11微分方程
12无穷级数
附录Ⅴ MATLAB软件简介(下)
附录Ⅵ 常见曲面
参考答案
评论
还没有评论。