fbpx

[email protected]

购物车

 查看订单

  • 我的帐户
东东购 | EasternEast
  • 中文书店
    • 畅销排行榜
      • 小说 畅销榜
      • 童书 畅销榜
      • 外语畅销榜
      • 管理畅销榜
      • 法律畅销榜
      • 青春文学畅销榜
    • 热门分类
      • 社会小说
      • 成功/励志 畅销榜
      • 人物传记
      • 大陆原创
      • 绘本童书
      • 影视小说
    • 文学推荐
      • 文集
      • 戏剧
      • 纪实文学
      • 名家作品
      • 民间文学
      • 中国现当代随笔
    • 新书热卖榜
      • 小说 新书热卖榜
      • 青春文学 新书热卖榜
      • 童书 新书热卖榜
      • 管理 新书热卖榜
      • 成功/励志 新书热卖榜
      • 艺术 新书热卖榜
  • 精选分类
    • 小说
    • 保健养生
    • 烹饪/美食
    • 风水/占卜
    • 青春文学
    • 童书
    • 管理
    • 成功/励志
    • 文学
    • 哲学/宗教
    • 传记
    • 投资理财
    • 亲子家教
    • 动漫/幽默
    • 法律 Legal
    • 经济 Economics
    • 所有分类
  • 关于东东
  • 帮我找书
搜索
首页自然科学数学索伯列夫乘子理论

索伯列夫乘子理论

作者:(英)马兹耶 著 出版社:世界图书出版公司 出版时间:2012年10月 

ISBN: 9787510048074
年中特卖用“SALE15”折扣卷全场书籍85折!可与三本88折,六本78折的优惠叠加计算!全球包邮!
trust badge

EUR €42.99

类别: 数学 SKU:5d8768925f98494bcc152ad9 库存: 缺货
  • 描述
  • 评论( 0 )

描述

开 本: 24开纸 张: 胶版纸包 装: 平装是否套装: 否国际标准书号ISBN: 9787510048074

内容简介

  《索伯列夫乘子理论》旨在为读者全面讲述微分函数空间对中点乘子理论。这个理论是在过去的三十年中通过众多学者大量积累发展起来的,《索伯列夫乘子理论》是前人结果的延伸和扩展。部分介绍了乘子理论,囊括了众多理论和概念,如,迹不等式、乘子的解析特性、索伯列夫乘子空间和其他空间之间的关系、乘子空间*子代数、迹和乘子扩展、乘子的范数和紧性以及乘子的综合特性;第二部分包括了该理论的大量应用,索伯列夫空间对中微分算子的连续性和紧性;乘子作为线性和伪线性双曲方程的解;lipschitz域中单层和双层势能理论的高级正则性和双曲边界值问题l_p理论中边界正则性;索伯列夫空间中的奇异积分算子。这部著作综合性强,文笔流畅,结构紧凑,是泛函分析,偏微分方程和伪微分算子等相关数学专业不可多得的教材和参考书。

目  录

introduction 

part i description and properties of multipliers 

1 trace inequalities for functions in sobolev spaces. 

1.1 trace inequalities for functions in wm1 and wm1 

1.2 trace inequalities for functions in wmp and wmp,
p>1 

1.3 estimate for the lq-norm with respect to an arbitrary
measure 

 

2 multipliers in pairs of sobolev spaces 

2.1 introduction 

2.2 characterization of the space m(wm1 → wl1) 

2.3 characterization of the space m(wmp → wlp) for p>1 

2.4 the space m(wmp(rn+)→wlp(rn+)) 

2.5 the space m(wmp→w-kp) 

2.6 the space m(wmp→wlp) 

2.7 certain properties of multipliers 

2.8 the space m(wmp→wlp) 

2.9 multipliers in spaces of functions with bounded
variation. 

 

3 multipliers in pairs of potential spaces 

3.1 trace inequality for bessel and riesz potential
spaces 

3.2 description of m(hmp→hlp) 

.3.3 one-sided estimates for the norm in m(hmp→hlp) 

3.4 upper estimates for the norm in m(hmp→hlp)by norms in besov
spaces 

3.5 miseenaneous properties of multipliers in
m(hmp→hlp) 

3.6 spectrum of multipliers in hlp and h-lp’ 

3.7 the space m(hmp→hlp) 

3.8 positive homogeneous multipliers 

 

4 the space m(bmp→blp) with p>1 

4.1 introduction 

4.2 properties of besov spaces 

4.3 proof of theorem 4.1.1 

4.4 sufficient conditious for inclusion into m(wmp→wlp)with
noninteger m and l 

4.5 conditions involving the space hln/m. 

4.6 composition operator on m(wmp→wlp) 

 

5 the space m(bm1→bl1) 

5.1 trace inequality for functions in bl1(rn) 

5.2 properties of functions in the space bk1(rn) , 

5.3 descriptions of-m(bm1→bl1) with integer l 

5.4 description of the space-m(bm1→bl1) with noninteger
l 

5.5 further results on multipliers in besov and other function
spaces 

 

6 maximal algebras in spaces of multipliers 

6.1 introduction 

6.2 pointwise interpolation inequalities for
derivatives 

6.3 maximal banach algebra in m(wmp→wlp) 

6.4 maximal algebra in spaces of bessel potentials 

6.5 imbeddings of maximal algebras 

 

7 essential norm and compactness of multipliers 

7.1 auxiliary assertions 

7.2 two-sided estimates for the essential norm. the case
m>l 

7.3 two-sided estimates for the essential norm in the case m =
l 

 

8.traces and extensions of multipliers 

8.1 introduction 

8.2 multipliers in pairs of weighted sobolev spaces in
rn+ 

8.3 characterization of m(wpt,→wps,) 

8.4 auxiliary estimates for an extension operator 

8.5 trace theorem fo/the space m(wpt,→wps, 

8.6 traces of multipliers on the smooth boundary of a
domain. 

8.7 mwlp(rn) as the space of traces of multipliers in the
weighted sobolev space wp,k(r+n+1) 

8.8 traces of functions in mwpl(rn+m) on rn 

8.9 multipliers in the space of bessel potentials as traces of
multipliers 

 

9 sobolev multipliers in a domain, multiplier mappings and
manifolds 

9.1 multipliers in a special lipschitz domain 

9.2 extension of multipliers to the complement of a special
lipschitz domain 

9.3 multipliers in a bounded domain 

9.4 change of variables in norms of sobolev spaces 

9.5 implicit function theorems 

9.6 space 

part ii applications of multipliers to differential and integral
operators 

 

10 differential operators in pairs of sobolev spaces 

10.1 the norm of a differential operator: wph→wph-k 

10.2 essential norm of a differential operator 

10.3 fredholm property of the schr6dinger operator 

10.4 domination of differential operators in rn 

 

11 schrsdinger operator and m(w21→w2-1) 

11.1 introduction 

11.2 characterization of m(w21→w2-1) and the schrodinger
operator on w12 

11.3 a compactness criterion 

11.4 characterization of m(w21→w2-1) 

11.5 characterization of the space m(w21()→w2-1()) 

11.6 second-order differential operators acting from w21 to
w21 

 

12 relativistic schrsdinger operator and
m(w21/2→w21/2) 

12.1 auxiliary assertions 

12.2 corollaries of the form boundedness criterion and related
results 

 

13 multipliers as solutions to elliptic equations 

13.1 the dirichlet problem for the linear second-order-elliptic
equation in the space of multipliers 

13.2 bounded solutions of linear eniptic equations as
multipliers 

13.3 solvability of quasilinear elliptic equations in spaces of
multipliers 

13.4 coercive estimates for solutions of elliptic equations in
spaces of multipliers 

13.5 smoothness of solutions to higher order elliptic semilinear
systems 

 

14 regularity of the boundary in lv-theory of elliptic boundary
value problems 

14.1 description of results 

14.2 change of variables in differential operators 

14.3 fredholm property of the elliptic b?undary value
problem 

14.4 auxiliary assertions 

14.5 solvability of the dirichlet problem in wlp() 

14.6 necessity of assumptions on the domain 

14.7 local characterization of mpl-1/p() 

 

15 multipliers in the classical layer potential theory for
lipschitz domains 

15.1 introduction 

15.2 solvability of boundary value problems in weighted sobolev
spaces 

15.3 continuity properties of boundary integral
operators 

15.4 proof of theorems 15.1.1 and 15.1.2 

15.5 properties of surfaces in the class mpl() 

15.6 sharpness of conditions imposed on 

15.7 extension to boundary integral equations of
elasticity 

 

16 applications of multipliers to the theory of integral
operators 

16.1 convolution operator in weighted l2-spaces 

16.2 calculus of singular integral operators with symbols in
spaces of multipliers 

16.3 continuity in sobolev spaces of singular integral operators
with symbols depending on x 

references 

list of symbols 

author and subject index

抢先评论了 “索伯列夫乘子理论” 取消回复

评论

还没有评论。

相关产品

加入购物车

数学指南:实用数学手册(畅销欧美,德文原版累计销量突破50万册)

EUR €75.99
加入购物车

博弈学习理论(当代世界学术名著)

EUR €31.99
阅读更多
缺货

程序员的数学1+2+3 数学思维+概率统计+线性代数(套装共3册)

EUR €132.97
加入购物车

演化与博弈论(西方经济社会名著译丛)

EUR €26.99

东东购的宗旨是服务喜爱阅读中文书籍的海外人民,提供一个完善的购书平台,让国人不论何时何地都能沉浸在书香之中,读着熟悉的中文字,回忆着家乡的味道。


安全加密结账 安心网络购物 支持Paypal付款

常见问题

  • 货物配送
  • 退换货政策
  • 隐私政策
  • 联盟营销

客户服务

  • 联系东东
  • 关于东东
  • 帮我找书
  • 货物追踪
  • 会员登入

订阅最新的优惠讯息和书籍资讯

选择币别

EUR
USD
CAD
AUD
NZD
NOK
GBP
CHF
SEK
CNY
UAH
ILS
SAR
MXN
KRW
MYR
SGD
HUF
TRY
JPY
HKD
TWD
facebookinstagram
©2020 东东购 EasternEast.com

限时特卖:用“SALE15”优惠券全场书籍85折!可与三本88折,六本78折的优惠叠加计算。 忽略