描述
开 本: 128开纸 张: 胶版纸包 装: 平装-胶订是否套装: 否国际标准书号ISBN: 9787115569257
1.Google安全团队在本书中分享了成功设计、实现、维护系统的实践,帮助读者可了解如何在编程和测试等环节中实现安全性和可靠性。
2.每一章均从基础内容入手,逐渐过渡到复杂的内容,深奥的部分会使用爬行动物图标来标识,帮读者掌握重点。
3.本书推荐了许多业界认可的工具和技术,读者可跟据自身项目的需求,设计适合自身风险状况的解决方案。
4.谷歌安全工程副总裁Royal Hansen、Google SRE总监Michael Wildpaner为本书作序推荐,并受到诸多业内人士赞誉:
“我有幸与作者共事多年,非常惊讶于他们毫无保留的分享。虽然这本书并非面面俱到,但我认为像它这样丰富的实用技巧和对权衡取舍的坦率讨论无可替代。”
——Eric Grosse
Google公司前安全工程副总裁
“在当今万物互联的时代,在线服务的安全性与可靠性愈发引人关注。本书的作者基于在Google多年的实践与思考,体系化地介绍了如何在早期对系统的安全性和稳定性进行顶层设计,同时把相应策略的执行贯穿系统的全生命周期。本书为互联网开发和运维人员提供了具有实践价值的指导。”
——郄小虎
腾讯公司副总裁
“Google把重点聚焦在安全主题上,并将可靠性和安全性深度结合,总结出了一套有效的方法,这套方法就是你手中这本书的精髓。”
——杨勇
腾讯云副总裁、腾讯安全平台部负责人
“这本书系统地介绍了DevSecOps的理念和实践。落地DevSecOps是庞大的工程,来看看Google是怎么做的吧!”
——胡珀
腾讯安全平台部应用运维安全中心总监
“Google的技术和理念在业内一直比较先进,安全方面也是如此。这本书提到的很多实践值得参考和尝试。推荐国内安全从业者一读。”
——林锐林
腾讯PCG安全总监
“Google拥有开放的分享经验,其安全团队在这本书中分享了众多先进的观点和解决方案,并提供了关于基础设施安全‘解坑’和安全设计的宝贵参考。”
——ThreatSource(鸟哥)
作为系统架构的重中之重,安全性和可靠性是设计和维护可扩展系统的核心。在本书中,Google安全团队分享了成功设计、实现、维护系统的实践。你将了解系统的设计策略,如何在编程、测试、调试等环节中实现安全性和可靠性,以及如何应对不可预知的安全事件。全书分为五大部分,共21章,内容涉及安全性和可靠性的关系,系统的设计原则、实现原则、维护原则,还辅以丰富的案例分析。阅读本书,你不仅能学到丰富的系统架构技巧,而且能看到相关从业者在面临复杂的实际状况时如何权衡利弊,从而真正提高系统的安全性和可靠性。
推荐序一 xvii
推荐序二 xix
对本书的赞誉 xxi
序一 xxiii
序二 xxv
前言 xxvii
第 一部分 入门资料
第 1章 安全性与可靠性的交集 3
1.1 从密码和电钻谈起 3
1.2 可靠性与安全性:设计注意事项 4
1.3 机密性、完整性、可用性 5
1.3.1 机密性 5
1.3.2 完整性 5
1.3.3 可用性 6
1.4 可靠性与安全性:共性 6
1.4.1 隐形 6
1.4.2 评估 7
1.4.3 简洁性 7
1.4.4 演变 7
1.4.5 弹性 8
1.4.6 从设计到生产 9
1.4.7 调查系统和日志 9
1.4.8 危机响应 9
1.4.9 恢复 10
1.5 小结 10
第 2章 了解攻击者 11
2.1 攻击者动机 12
2.2 攻击者画像 13
2.2.1 业余爱好者 13
2.2.2 漏洞研究人员 13
2.2.3 黑客活动家 14
2.2.4 犯罪分子 14
2.2.5 自动化和人工智能 15
2.2.6 内部人员 15
2.3 攻击者方法论 19
2.3.1 威胁情报 19
2.3.2 网络杀伤链 20
2.3.3 TTP 20
2.4 风险评估注意事项 21
2.5 小结 21
第二部分 设计系统
第3章 示例分析:安全代理 25
3.1 生产环境中的安全代理 25
3.2 Google工具代理 27
3.3 小结29
第4章 设计中的权衡 30
4.1 设计目标和要求 31
4.1.1 特性需求 31
4.1.2 非功能性需求 31
4.1.3 功能与涌现特性 32
4.1.4 案例:Google的设计文档 33
4.2 需求平衡 34
4.3 处理紧张局势和统一目标 37
4.3.1 案例:微服务和Google Web应用程序框架 37
4.3.2 统一涌现特性的需求 39
4.4 初始速度和持续速度 39
4.5 小结 41
第5章 小特权设计 42
5.1 概念和术语 43
5.1.1 小特权 43
5.1.2 零信任网络 43
5.1.3 零接触 43
5.2 基于风险的访问分类 43
5.3 实践 44
5.3.1 API功能小化 45
5.3.2 Breakglass机制 47
5.3.3 审计 47
5.3.4 测试和小特权 49
5.3.5 诊断被拒绝的访问 50
5.3.6 优雅失败和Breakglass机制 51
5.4 工作案例:配置分发 51
5.4.1 基于OpenSSH实现的POSIX API 52
5.4.2 软件更新API 52
5.4.3 自定义OpenSSH ForceCommand 53
5.4.4 自定义HTTP接收器(边车) 53
5.4.5 自定义HTTP接收器(内置) 53
5.4.6 权衡取舍 53
5.5 一种用于认证和授权决策的策略框架 54
5.5.1 使用高级授权控件 55
5.5.2 投入广泛使用的授权框架 55
5.5.3 避免潜在的陷阱 56
5.6 高级控制 56
5.6.1 MPA 56
5.6.2 3FA 57
5.6.3 业务依据 58
5.6.4 临时访问 59
5.6.5 代理 59
5.7 权衡和冲突 59
5.7.1 增加了安全复杂性 60
5.7.2 对合作商及公司文化的影响 60
5.7.3 影响安全性的质量数据和系统 60
5.7.4 对用户工作效率的影响 60
5.7.5 对开发复杂性的影响 60
5.8 小结 61
第6章 面向易理解性的设计 62
6.1 为什么易理解性很重要 62
6.1.1 系统不变量 63
6.1.2 分析不变量 64
6.1.3 心智模型 65
6.2 设计易理解的系统 65
6.2.1 复杂性与易理解性 65
6.2.2 分解复杂性 66
6.2.3 集中负责安全性和可靠性需求 67
6.3 系统架构 67
6.3.1 易于理解的接口规范 68
6.3.2 易于理解的身份、认证和访问控制 69
6.3.3 安全边界 74
6.4 软件设计 78
6.4.1 使用应用程序框架满足服务需求 78
6.4.2 理解复杂的数据流 79
6.4.3 考虑API的可用性 81
6.5 小结 83
第7章 适应变化的设计 84
7.1 安全变更的类型 85
7.2 变更中的设计 85
7.3 让发布更容易的架构决策 86
7.3.1 让依赖项保持并频繁重建86
7.3.2 用自动化测试让发布更频繁86
7.3.3 使用容器 87
7.3.4 使用微服务 87
7.4 不同的变更:不同的速度与不同的时间线 89
7.4.1 短期变更:零日漏洞 90
7.4.2 中期变更:改善安全态势 92
7.4.3 长期变更:外部需求 94
7.5 难点:计划调整 96
7.6 不断扩大的范围:心脏滴血漏洞 97
7.7 小结 98
第8章 弹性设计 99
8.1 弹性设计原则 100
8.2 纵深防御 100
8.2.1 特洛伊木马 100
8.2.2 Google App Engine分析 102
8.3 控制降级 104
8.3.1 区分故障成本 105
8.3.2 部署响应机制 107
8.3.3 负责任的自动化 109
8.4 控制爆炸半径 111
8.4.1 角色分离 112
8.4.2 位置分离 113
8.4.3 时间分离 115
8.5 故障域和冗余 115
8.5.1 故障域 116
8.5.2 组件类型 117
8.5.3 控制冗余 119
8.6 持续验证 120
8.6.1 验证关键区域 121
8.6.2 验证实践 122
8.7 实践建议:着手点 124
8.8 小结 125
第9章 面向恢复性的设计 127
9.1 要恢复什么 128
9.1.1 随机错误 128
9.1.2 意外错误 128
9.1.3 软件错误 128
9.1.4 恶意行为 129
9.2 恢复机制的设计原则 129
9.2.1 面向快速恢复的设计(受政策监督) 129
9.2.2 限制对外部时间观念的依赖 132
9.2.3 回滚所代表的安全性和可靠性间的权衡 133
9.2.4 使用显式吊销机制 139
9.2.5 了解精确到字节的预期状态 142
9.2.6 面向测试和持续验证的设计 145
9.3 紧急访问 146
9.3.1 访问控制 147
9.3.2 通信 148
9.3.3 响应人员的习惯 148
9.4 预期外的收益 149
9.5 小结 149
第 10章 缓解拒绝服务攻击 150
10.1 攻守双方的策略 150
10.1.1 攻方的策略 151
10.1.2 守方的策略 152
10.2 面向防御的设计 152
10.2.1 具有防御能力的架构 152
10.2.2 使服务具备防护能力 154
10.3 缓解攻击 154
10.3.1 监控与告警 154
10.3.2 优雅降级 155
10.3.3 DoS防护系统 155
10.3.4 有策略的响应 156
10.4 应对源于服务本身的“攻击” 157
10.4.1 用户行为 157
10.4.2 客户端重试行为 158
10.5 小结 159
第三部分 实现系统
第 11章 案例分析:设计、实现和维护一个受信任的公共CA 163
11.1 受信任的公共CA的背景 163
11.2 为什么需要受信任的公共CA 164
11.3 自建还是购买CA 165
11.4 设计、开发和维护过程中的考虑 165
11.4.1 选择编程语言 166
11.4.2 复杂与简明 166
11.4.3 保护第三方和开源组件 167
11.4.4 测试 167
11.4.5 CA密钥材料的弹性 168
11.4.6 数据验证 168
11.5 小结 169
第 12章 编写代码 170
12.1 框架级安全性和可靠性保证措施 171
12.1.1 使用框架的好处.172
12.1.2 案例:用于创建RPC后端的框架 172
12.2 常见安全漏洞 176
12.2.1 SQL注入漏洞:TrustedSqlString 177
12.2.2 预防XSS漏洞:SafeHtml 178
12.3 评估和构建框架的经验 179
12.3.1 用于常见任务的简单、安全、可靠的库 180
12.3.2 部署策略 181
12.4 简洁性有助于提升代码的安全性和可靠性 182
12.4.1 避免多层嵌套 182
12.4.2 消除YAGNI类代码 183
12.4.3 偿还技术债务 184
12.4.4 重构 184
12.5 默认安全性和可靠性 185
12.5.1 选择合适的工具 185
12.5.2 使用强类型 186
12.5.3 检查代码.188
12.6 小结 189
第 13章 代码测试 190
13.1 单元测试 190
13.1.1 编写有效的单元测试 191
13.1.2 编写单元测试的时机 191
13.1.3 单元测试对代码的影响 192
13.2 集成测试 193
13.3 动态程序分析 194
13.4 模糊测试 197
13.4.1 模糊引擎的工作原理 197
13.4.2 编写有效的模糊测试驱动程序 200
13.4.3 示例fuzzer 201
13.4.4 持续模糊测试 204
13.5 静态程序分析 205
13.5.1 自动代码检查工具 205
13.5.2 如何将静态分析集成至开发工作流中 209
13.5.3 抽象解释 211
13.5.4 形式化方法 213
13.6 小结 213
第 14章 部署代码 214
14.1 概念和术语 214
14.2 威胁建模 216
14.3 实践 217
14.3.1 强制做代码审查 217
14.3.2 依赖自动化 218
14.3.3 验证工件,而不仅仅是人 218
14.3.4 将配置视为代码.219
14.4 基于威胁建模做安全加固 220
14.5 高级缓解策略 222
14.5.1 二进制文件来源 222
14.5.2 基于来源的部署策略 224
14.5.3 可验证的构建 225
14.5.4 部署阻塞点 230
14.5.5 部署后验证 231
14.6 实用建议 232
14.6.1 一步步来 232
14.6.2 提供可操作的错误消息 233
14.6.3 确保来源信息明确 233
14.6.4 创建明确的策略 233
14.6.5 引入Breakglass机制 234
14.7 重温基于威胁建模部署安全措施 234
14.8 小结 234
第 15章 调查系统 235
15.1 从调试到调查 236
15.1.1 案例:临时文件 236
15.1.2 调试技巧 237
15.1.3 当陷入困境时该怎么办 243
15.1.4 协同调试:一种教学方法 246
15.1.5 安全调查与系统调试间的差异 246
15.2 收集恰当、有用的日志 247
15.2.1 将日志设计为不可变的 248
15.2.2 考虑隐私要素 249
15.2.3 确定要保留哪些安全相关的日志 249
15.2.4 日志记录成本 252
15.3 可靠、安全的调试访问 253
15.3.1 可靠性 253
15.3.2 安全性 253
15.4 小结 254
第四部分 维护系统
第 16章 防灾规划 257
16.1 “灾难”的定义 257
16.2 动态灾难响应策略 258
16.3 灾难风险分析 259
16.4 建立事件响应团队 259
16.4.1 确定团队成员和角色 260
16.4.2 制订团队章程 261
16.4.3 建立严重性和优先级模型 262
16.4.4 确定与IR团队合作的运营参数 262
16.4.5 制订响应计划 263
16.4.6 创建详细的行动手册 264
16.4.7 确保访问和更新机制就位 264
16.5 在事件发生前预先安排系统和人员 264
16.5.1 配置系统 265
16.5.2 培训 265
16.5.3 流程和程序 266
16.6 测试系统和响应计划 266
16.6.1 审计自动化系统 267
16.6.2 开展非侵入式桌面演练.267
16.6.3 在生产环境中测试响应 268
16.6.4 红队测试 270
16.6.5 评估响应 270
16.7 Google的案例 271
16.7.1 具有全球影响的测试 271
16.7.2 DiRT演习测试紧急访问 271
16.7.3 行业级漏洞 271
16.8 小结 272
第 17章 危机管理 273
17.1 是否存在危机 274
17.1.1 事件分诊 274
17.1.2 入侵与缺陷 275
17.2 指挥事件 276
17.2.1 第 一步:不要惊慌 276
17.2.2 开展响应 277
17.2.3 组建自己的事件团队 277
17.2.4 OpSec 278
17.2.5 牺牲好的OpSec实践换取更大的利益 280
17.2.6 调查过程 280
17.3 控制事件 283
17.3.1 并行处理事件 283
17.3.2 移交 284
17.3.3 士气 286
17.4 沟通 287
17.4.1 误解 287
17.4.2 拐弯抹角 287
17.4.3 会议 288
17.4.4 让合适的人了解合适的细节 289
17.5 整合回顾 290
17.5.1 分诊 290
17.5.2 宣布事件 290
17.5.3 沟通和OpSec 290
17.5.4 开始处理事件 291
17.5.5 移交 291
17.5.6 交还事件调查工作 291
17.5.7 准备沟通和补救 292
17.5.8 结束 292
17.6 小结 293
第 18章 恢复和善后 294
18.1 恢复调度 295
18.2 恢复时间线 296
18.3 恢复计划 297
18.3.1 确定恢复范围 297
18.3.2 恢复过程的考虑因素 298
18.3.3 恢复检查清单 301
18.4 启动恢复 302
18.4.1 隔离资产 302
18.4.2 系统恢复和软件升级 303
18.4.3 数据过滤 304
18.4.4 恢复数据 304
18.4.5 更换凭据和密钥 305
18.6 恢复之后 306
18.7 示例 308
18.7.1 被入侵的云实例 308
18.7.2 大规模钓鱼攻击 309
18.7.3 需要复杂恢复工作的、有针对性的攻击 310
18.8 小结 311
第五部分 组织与文化
第 19章 案例研究:Chrome安全团队 315
19.1 背景和团队发展史 315
19.2 安全是团队的职责 317
19.3 帮助用户安全地浏览Web页面 318
19.4 速度很重要 319
19.5 设计纵深防御机制 319
19.6 保持透明,让社区参与进来 320
19.7 小结 320
第 20章 理解角色和责任 321
20.1 谁为安全性和可靠性负责 322
20.1.1 专家的作用 322
20.1.2 了解安全专业知识 324
20.1.3 资格认证和学术教育 325
20.2 将安全性整合到组织中 325
20.2.1 嵌入安全人员和安全团队 327
20.2.2 案例:Google的嵌入式安全 327
20.2.3 特殊的团队:蓝队和红队 329
20.2.4 外部研究者 330
20.3 小结 332
第 21章 建立安全可靠的文化 333
21.1 定义健康的安全性和可靠性文化 334
21.1.1 默认的安全性和可靠性文化 334
21.1.2 评审文化 335
21.1.3 意识文化 336
21.1.4 说“是”的文化 339
21.1.5 接受必然性的文化 340
21.1.6 可持续发展文化 340
21.2 通过实践改变文化 342
21.2.1 对齐项目目标和激励参与者 342
21.2.2 通过风险规避机制减少恐惧 343
21.2.3 使安全兜底措施成为常态 344
21.2.4 提高生产力和可用性 344
21.2.5 多沟通,保持透明 345
21.2.6 怀抱同理心 346
21.3 说服领导层 347
21.3.1 了解决策过程 347
21.3.2 为变革立案 348
21.3.3 选择自己的战场 349
21.3.4 升级和问题解决 349
21.4 小结 350
总结 351
附录 灾难风险评估矩阵 353
作者介绍 355
封面介绍 355
评论
还没有评论。