描述
开 本: 16开纸 张: 胶版纸包 装: 平装-胶订是否套装: 否国际标准书号ISBN: 9787111682547丛书名: 数据科学与工程技术丛书
(1)豪华作者阵容:作者全部是自腾讯、滴滴、快手等一线互联网企业的数据科学家、数据分析师和算法工程师,经验极为丰富。
(2)三维度深融合:将数据科学的3个维度——商业理解、量化模型、数据技术全面打通,涵盖数据科学的应用场景、理论支撑和技术底座。
(3)应用场景面广:本书所有数据科学应用场景均来自商业环境,强调实用、可操作性强。
(4)方法论与案例:围绕3大主题给出了大量方法论和实践,方法论与案例的背景、代码、解读等模块深度融合。
这是一本将数据科学三要素——商业理解、量化模型、数据技术全面打通的实战性著作,是来自腾讯、滴滴、快手等一线互联网企业的数据科学家、数据分析师和算法工程师的经验总结,得到了SQLFlow创始人以及腾讯、网易、快手、贝壳找房、谷歌等企业的专家一致好评和推荐。
全书三个部分,内容相对独立,既能帮助初学者建立知识体系,又能帮助从业者解决商业中的实际问题,还能帮助有经验的专家快速掌握数据科学的技术和发展动向。内容围绕非实验环境下的观测数据的分析、实验的设计和分析、自助式数据科学平台3大主题展开,涉及统计学、经济学、机器学习、实验科学等多个领域,包含大量常用的数据科学方法、简洁的代码实现和经典的实战案例。
部分(第 1~6 章) 观测数据的分析技术
讲解了非实验环境下不同观测数据分析场景所对应的分析框架、原理及实际操作,包括消费者选择偏好分析、消费者在时间维度上的行为分析、基于机器学习的用户生命周期价值预测、基于可解释模型技术的商业场景挖掘、基于矩阵分解技术的用户行为规律发现与挖掘,以及在不能进行实验分析时如何更科学地进行全量评估等内容。
第二部分(第7~9章)实验设计和分析技术
从 A/B 实验的基本原理出发,深入浅出地介绍了各种商业场景下进行实验设计需要参考的原则和运用的方法,尤其是在有样本量约束条件下提升实验效能的方法及商业场景限制导致的非传统实验设计。
第三部分(第10~12章) 自助式数据科学平台SQLFlow
针对性的讲解了开源的工程化的自助式数据科学平台SQLFlow,并通过系统配置、黑盒模型的解读器应用、聚类分析场景等案例帮助读者快速了解这一面向未来的数据科学技术。
第1章:如何分析用户的选择 1
1.1选择行为的经济学理论 1
1.1.1 选择无处不在 1
1.1.2 选择行为的经济学理论 2
1.2 用户选择行为计量分析框架:DCM 4
1.2.1 从经济模型到计量模型 4
1.2.2 常用的DCM模型及应用场景 8
1.3 DCM模型的Python实践 11
1.3.1?软件包?&?数据格式 11
1.3.2 使用Logistics Regression分析自驾选择问题 15
1.3.3 使用 Multinomial Logit Model 分析完整交通方式选择问题 21
1.3.4 使用 Nested Logit Model 分析完整交通方式选择问题 25
1.4 本章小节 27
第二章:随时间可变的行为分析 27
2.1 从“如何给二手车定价”案例说起 27
2.1.1 二手车定价背景 27
2.1.2 为什么不选择一般回归模型? 28
2.1.3 为什么选择生存分析? 29
2.2 生存分析的理论框架 29
2.2.2 生存函数及风险函数刻画 34
2.2.3 生存函数回归及生存概率的预测 36
2.3 生存分析在二手车定价案例中的应用实践 38
2.3.1 软件包&数据格式&数据入读 40
2.3.2 生存分析基础操作:二手车销售生存曲线绘制及差异对比 42
第三章 洞察消费者长期价值:基于神经网络的LTV建模 44
3.1 LTV的概念和商业应用 44
3.1.1 LTV——用户终生(长期)价值 45
3.1.2 用户生命周期和用户终生价值 45
3.1.3 LTV的特点 46
3.1.4 LTV分析能帮助我们回答的问题 46
3.1.5 LTV的计算方法 47
3.2 神经网络的基本原理 49
3.2.1 神经网络的历史 49
3.2.2 本章所涉及的神经网络结构 50
3.3 基于Keras的LTV模型实践 56
3.3.1 Keras介绍 56
3.3.2 数据的加载和预处理 56
3.3.3 输入数据的准备 59
3.3.4 模型搭建和训练 65
3.3.5 模型分析 68
3.4 本章总结 68
第4章 使用体系化分析方法进行场景挖掘 69
4.1. 选择经验化分析还是体系化分析 69
4.1.1经验化分析的局限性 69
4.1.2体系化方法的手段和优势 70
4.2. 体系化分析常用工具 71
4.2.1黑盒模型与白盒模型 71
4.2.2可解释模型——决策树 71
4.2.3全局代理模型 76
4.2.4场景挖掘模型分析方法框架 77
4.3. 场景挖掘分析实践 78
4.3.1数据背景及数据处理 78
4.3.2经验化分析 80
4.3.3场景挖掘模型的Python实现与模型解读 80
4.4. 本章小结 86
第5章 行为规律的发现与挖掘 86
概述 86
5.1对包含有顺序关系数据的规律分析 87
5.1.1有序数据及SVD方法概述 87
5.1.2SVD原理及推导 88
5.1.3SVD聚类建模Python实战 93
5.2对无序稀疏数据的规律分析 98
5.2.1稀疏数据及NMF方法概述 98
5.2.2NMF原理及推导 99
5.2.3NMF聚类建模Python实战 100
第6章 对观测到的事件进行因果推断 104
6.1 使用全量评估分析已发生的事件 104
6.1.1 为什么要进行全量评估 104
6.1.2 全量评估应用 105
6.2 全量评估主要方法 105
6.2.1 回归分析 105
6.2.2 DID方法 114
6.2.3 合成控制 116
6.2.4 Causal Impact 119
6.3 全量评估方法的应用 123
6.3.1 关于物流单量的全量评估应用(回归模型) 123
6.3.2 恐怖主义对经济影响评估(DID) 128
6.3.3 恐怖主义对经济影响评估(合成控制) 130
6.3.4 天气情况的评估(Causal Impact) 133
6.4 本章小结 147
第7章 如何比较两个策略的效果 147
7.1如何才能正确推断因果关系? 147
7.1.1 什么是相关性谬误 147
7.1.2 潜在结果和因果效果 148
7.2运用A/B实验进行两策略比较 149
7.2.1 什么是A/B实验 149
7.2.2 为什么应用A/B实验 150
7.2.3 A/B实验的基本原理 150
7.3 A/B实验应用步骤(实验方法具体实施步骤) 151
7.3.1 明确实验要素 151
7.3.2 实验设计 153
7.3.3实验过程监控 155
7.4 A/B实验案例介绍 156
7.4.1 实验场景介绍 156
7.4.3实验效果评估 158
7.5 本章小结 159
第8章 如何提高实验效能 160
8.1 控制实验指标方差的必要性和手段 160
8.2 用随机区组设计控制实验指标方差 161
8.2.1 利用随机区组实验实验设计降低方差 161
8.2.2 随机区组实验的特征选择 162
8.3 随机区组实验应用步骤 163
8.3.1 明确实验目标及背景: 163
8.3.2 实验设计: 163
8.3.3 实验过程监控: 163
8.3.4 实验评估中用到的方差分析的基本原理: 163
8.4 随机区组实验案例介绍 168
8.4.1 背景介绍: 168
8.4.2 基本设计: 169
8.4.3 随机区组实验相关的设计: 169
8.4.4 效果评估 170
8.5 随机区组实验常见问题 172
8.5.1 方差分析的使用前提是什么 172
8.5.2 随机区组的个数是越多越好吗? 172
8.5.3 随机区组实验的回归方程的$R^2$是越高越好吗,是否证明策略有效果? 173
8.6 本章小节 173
第9章 特殊场景下的实验设计和分析方法 173
9.1 分流的实验对象间有干扰怎么办 174
9.2 如果实验不能简单分流怎么办(Switchback实验设计和评估方法) 181
9.3 如果实验不能简单分流且时间效率要求高怎么办?(交叉实验设计) 186
9.4 如果不能分流的实验且策略不能轮转怎么办? 199
9.5 本章总结 205
10.1 SQLFlow简介 206
10.1.1 什么是SQLFlow 206
10.1.2 SQLFlow的定位和目标 207
10.1.3 SQLFlow工作原理 209
10.2 SQLFLow 运行环境的设置 210
SQLFlow in Docker 210
环境配置 215
交互 224
Jupyter Notebook 225
REPL 225
10.3 将分析模型固化到 SQLFlow 中的流程 226
10.4 总结 232
11.1.1 模型可解释的重要性和必要性 233
模型解释的重要性 233
模型解释的必要性 233
11.1.2 常见的可解释性模型 234
(1)线性回归 235
(2)逻辑回归 238
(3) 决策树 242
(4)KNN 243
(5)朴素贝叶斯分类器 245
(6)模型比较 246
11.2 黑盒模型的解释性 247
11.2.1 如何对黑盒模型进行解释 247
11.2.2 代理模型 248
11.2.3 Shapley 250
11.2.4 基于SQLFLow的黑盒模型解释的案例 251
11.3 本章小结 255
第12章 基于LSTM-autoencoder的无监督聚类模型 255
12.1 聚类的广泛应用 256
12.1.1 什么是聚类或模式识别 256
12.2 聚类模型的应用案例 257
12.2.1 k-means clustering — 司机服务站点选址规划 257
12.2.2 Hierarchical Clustering — 超市采购商分组 260
12.3 SQLFlow中基于深度学习的聚类模型 265
12.3.1 基于深度学习的聚类模型原理 265
12.3.2 Case study – 如何使用SQLFlow对城市道路交通状况进行分层 272
12.4 本章小结 275
为什么要写这本书
2011年,《哈佛商业评论》将数据科学称作“21世纪吸引人的行业”,随后,数据科学这个概念开始从互联网漫延到各行各业。但是人们对这个概念的内涵和外延并无统一的认知,同时,数据科学也不像软件工程、市场营销等方向有较为明确的教育体系作为支撑,开设“数据科学”学科和课程的学校都是2011年之后才开始探索的,并且大多没有一个适用于工业应用的课程体系。从业人员普遍反映需要一个系统的框架来搭建自己的技术栈和知识体系,从而提升专业化的能力。因此,市场上迫切需要一本覆盖面广、应用性强、深入浅出的数据科学手册。
本书的作者是国内数据科学一线的从业者,创作目的主要有以下三个。
1)提供一个以商业场景为导向的实用量化方法论。数据科学是为商业服务的,重要的能力是收敛开放的商业问题,并有针对性地选择适当的量化框架进行后验数据分析。这是一个相辅相成的过程,收敛的过程既依赖对业务的深刻理解,又需要充分理解各种分析框架的假设和抽象原理。
2)提供一个入门的台阶,供读者按图索骥、深入研究。数据科学领域知识面广,又有一定的深度,需要长期的学习和经验的积累。一本书很难涵盖数据科学的所有知识点,但是本书可以点明关键节点,起到引导作用,帮助读者进行后续的进阶学习。
3)展示数据科学所需的专业能力和门槛,为读者在求职过程中找准定位、为人事部门进行职能设计提供范例。现在数据科学领域的就业和招聘十分热门,但是能说清数据科学专家到底需要什么样的技能、需要达到什么样的程度,以及这个行业有什么典型成功案例的人却非常少。
读者对象
本书适合以下读者:
初入职场的数据分析师,用于升级个人专业分析技能;
从业多年的数据科学管理者,用于梳理、整合知识体系,提升团队能力;
数据科学、商业分析等专业的师生,用于延展阅读;
数据科学行业的人力专家和猎头,用于标定潜在候选人能力。
本书特色
相比于市面上其他数据科学相关图书,本书有以下特色。
1)将技术与商业场景紧密结合,强调开放性商业问题在量化分析上的收敛。市场上不乏纯技术类的数据科学图书和各种机器学习建模、统计计算的图书,但是这些书都跳过了对开放式商业问题的思考,直接针对已经非常明确的建模本身进行介绍。本书则将重心放在案例分析的全流程上,既讲解量化模型的理论,又解释商业到数理模型的映射过程,还强调了对模型结果的解读和应用,实用性非常强。
2)这是国内本系统介绍统计实验在多种复杂商业场景下具体应用的书。统计实验相关的图书通常分为三类:类侧重理论研究,对于已经工作的读者来说实践意义不大,且学习难度高;第二类是将生物医学领域的理论和案例相结合,这类书的应用场景和背景与互联网行业相差较大,不容易做到举一反三;第三类是少部分互联网领域统计实验的书,这类书多是外文,知识较新,阅读门槛较高,通常针对互联网广告和搜索领域,在不理解理论背景的情况下也难以迁移到其他场景。
3)本书应用场景覆盖面广,强调实用,可操作性强,将方法论与配套案例的背景、代码、解读等模块结合在一起,让读者学习后即可运用在实践中。
如何阅读本书
这是一本将数据科学三要素—商业理解、量化模型、数据技术全面打通的实战性著作,是来自腾讯、滴滴、快手等一线互联网企业的数据科学家、数据分析师和算法工程师的经验总结,得到了SQLFlow创始人以及腾讯、网易、快手、贝壳找房、谷歌等企业的专家一致好评和推荐。
全书三个部分,内容相对独立,既能帮助初学者建立知识体系,又能帮助从业者解决商业中的实际问题,还能帮助有经验的专家快速掌握数据科学的技术和发展动向。内容围绕非实验环境下的观测数据的分析、实验的设计和分析、自助式数据科学平台3大主题展开,涉及统计学、经济学、机器学习、实验科学等多个领域,包含大量常用的数据科学方法、简洁的代码实现和经典的实战案例。
部分(第1~6章)观测数据的分析技术
讲解了非实验环境下不同观测数据分析场景所对应的分析框架、原理及实际操作,包括消费者选择偏好分析、消费者在时间维度上的行为分析、基于机器学习的用户生命周期价值预测、基于可解释模型技术的商业场景挖掘、基于矩阵分解技术的用户行为规律发现与挖掘,以及在不能进行实验分析时如何更科学地进行全量评估等内容。
第二部分(第7~9章)实验设计和分析技术
从A/B实验的基本原理出发,深入浅出地介绍了各种商业场景下进行实验设计需要参考的原则和运用的方法,尤其是在有样本量约束条件下提升实验效能的方法及商业场景限制导致的非传统实验设计。
第三部分(第10~12章) 自助式数据科学平台SQLFlow
针对性地讲解了开源的工程化的自助式数据科学平台SQLFlow,并通过系统配置、黑盒模型的解读器应用、聚类分析场景等案例帮助读者快速了解这一面向未来的数据科学技术。
勘误和支持
除封面署名外,参与本书编写工作的还有:周银河、丁芬、苏涛、王禹、吴君涵、杨骁捷、刘冲、王玉玺、刘未名、杨凯迪、李依诺、陈祥、朱文静。由于作者的水平有限,编写时间仓促,书中难免会出现一些错误或者不准确的地方,恳请读者批评指正。为此,我们特意创建了一个GitHub仓库(https://github.com/xieliaing/Data_Science_Industrial_Practice)。读者可以将发现的代码Bug、文字问题以及疑惑,在Issue中提出,我们会将修改后的内容及解答通过Pull Request合并进主干。书中的全部源文件除可以从华章网站下载外,还可以从这个GitHub仓库下载,期待能够得到你们的真挚反馈。
致谢
首先要感谢C. F. Jeff Wu、Williaw S. Cleveland、LinkedIn的DJ Patil及Facebook的Jeff Hammerbacher等先驱,他们成功地开创了数据科学这一个行业,影响和激励了无数人投身其中。
感谢快手科技副总裁、数据分析部负责人宋世君把数据科学的理念引入国内,实现了从0到1的跨越。感谢我原来统计科学团队的同事们,他们是国内数据科学的开拓者,通过实践让数据科学的理念在国内萌芽发展、完善进步并得到认可。
感谢发起并维护SQLFlow开源社区的王益博士、刘勇峰老师及其开发团队。
感谢机械工业出版社华章公司的杨福川老师和韩蕊老师,在这一年多的时间里始终支持我们写作,保障了本书顺利完成。
谨以此书献给我亲爱的家人以及众多热爱并投身数据科学的朋友们!
谢梁
2021年2月8日
如果石油曾是工业革命的关键生产要素,那么数据洞悉能力就是互联网时代的核心生产力。本书作者具备很强的专业能力,本书是他们在国内一线互联网公司的实践经验总结,从商业场景出发介绍了有关的理论、方法和应用,为数据分析师和数据科学家提供了极具实践价值的参考资料。
——郄小虎 腾讯公司副总裁
数据的爆炸式增长对企业如何科学地、正确地使用数据去驱动业务增长提出了极高的要求。本书总结了大量作者团队在用户行为模式的量化分析与机器学习建模方面的实战经验,能帮助读者快速建立系统的分析框架,提高利用数据分析工具进行业务分析的能力,非常适合互联网数据分析和对商业分析感兴趣的从业者。
——叶杰平 贝壳找房技术副总裁/首席科学家
本书从数据科学的定义、价值、工具等角度清晰地回答了数据科学是什么、能做什么以及怎么做的问题。它在许多重要的议题上,比如观测类数据的分析、实验的方案设计与实验分析等方面都提供了详尽的介绍,是一本教科书级别的著作。在实战上,本书介绍的工具、技术与方法论,都是围绕具体的商业命题展开的,能帮助读者更加深刻地理解自己工作的内容和价值,带来技能和认知的双重提升。我强烈建议从事数据行业的同学深读这本书。
——陈炬 网易数据委员会负责人/网易严选数据及风控部门负责人
数据科学近年来在国内逐渐兴起,并从互联网快速渗透到各行各业,在数字化转型大潮中起着越来越重要的作用,而关于数据科学的定义和技术认知并不清晰,结合商业场景的数据科学工程实践类图书更是少之又少。本书恰好弥补了这一空白,既结合商业理解对量化模型、实验设计进行了深入浅出的阐述,又有各种数据技术的实操代码实现,还有面向未来的自助式数据科学平台实践,非常适合数据相关从业者阅读参考。
——巴川 竞技世界首席数据科学家/中国计算机学会技术前线数据科学SIG主席
21世纪是数据为王的时代。本书作者结合一线实战经验,深入浅出地介绍了数据科学的核心知识点,并从出行、定价等领域的实例出发,对用户行为分析和机器学习建模进行了大量的实战讨论,推荐从业人员阅读。
——Mingxing Tan 谷歌大脑研究员
评论
还没有评论。