描述
开 本: 16开纸 张: 胶版纸包 装: 平装-胶订是否套装: 否国际标准书号ISBN: 9787111606239
编辑推荐
氧化石墨烯(GO)已成为近10年来研究广泛的材料之一。它促进了化学/物理和材料科学领域的大规模跨学科研究。由于其独特的性能,GO已成功通过多种应用测试。这一富有成果的研究领域已经产生了大量的出版物。一些综述文章总结了新进展。然而截至目前,将所有已发表的研究进行系统化,并且帮助对这一领域感兴趣的非专家读者方面只做了少量工作。本书旨在完成这项任务,每章的内容和本书总体上都是从基础到复杂,以经典科学领域中典型的类别呈现。这使得本书与众不同,有别于其他文献。
本书系统地介绍了氧化石墨烯自19世纪起的历史发展沿革,不仅涵盖了氧化石墨烯合成过程机理、结构模型、成分组成、化学性质、能谱表征结果以及功能化修饰等相关内容,同时也介绍了氧化石墨烯在电子传感器件、能源收集存储、薄膜宏观体、复合材料、生物医学、化学催化以及工业化生产方面应用的新研究进展。本书内容全面详尽,内容深度和机理解释客观,是一本学习氧化石墨烯基本原理与相关应用研究的经典著作,很适合石墨烯功能材料领域化学、材料、物理、生物等学科师生以及研究者参阅。
本书系统地介绍了氧化石墨烯自19世纪起的历史发展沿革,不仅涵盖了氧化石墨烯合成过程机理、结构模型、成分组成、化学性质、能谱表征结果以及功能化修饰等相关内容,同时也介绍了氧化石墨烯在电子传感器件、能源收集存储、薄膜宏观体、复合材料、生物医学、化学催化以及工业化生产方面应用的新研究进展。本书内容全面详尽,内容深度和机理解释客观,是一本学习氧化石墨烯基本原理与相关应用研究的经典著作,很适合石墨烯功能材料领域化学、材料、物理、生物等学科师生以及研究者参阅。
内容简介
本书系统地介绍了氧化石墨烯自19世纪起的历史发展沿革,不仅涵盖了氧化石墨烯合成过程机理、结构模型、成分组成、化学性质、能谱表征结果以及功能化修饰等相关内容,同时也介绍了氧化石墨烯在电子传感器件、能源收集存储、薄膜宏观体、复合材料、生物医学、化学催化以及工业化生产方面应用的新研究进展。本书内容全面详尽,内容深度和机理解释客观,是一本学习氧化石墨烯基础原理与相关应用研究的经典著作。
目 录
译者序
原书序
原书前言
本书主编
本书参编
第1部分 基本原理
第1章 氧化石墨烯的沿革——从起源到石墨烯热潮2
1.1引言2
1.2氧化石墨烯制备4
1.2.1改进和简化氧化石墨烯制备的试验4
1.2.2石墨的过氧化6
1.2.3形成机理——首次近似7
1.3重要含氧官能团的发现以及相关结构模型的发展9
1.3.1石墨氧化物成分解析9
1.3.2 1930~2006年结构模型的创造10
1.3.3形成机理的考虑——第二次近似14
1.4氧化石墨烯性质16
1.4.1热降解和它的产物16
1.4.2化学还原反应17
1.4.3与酸和碱的反应19
1.4.4“渗透膨胀”:水合作用和胶体形成19
1.4.5氧化石墨烯的酸性21
1.4.6插层和功能化反应24
1.4.7官能团以及它们对氧化石墨烯形成和破坏的反应与关系25
1.5总结26
参考文献27
第2章 氧化石墨烯的形成机理和化学结构33
2.1引言33
2.2结构的基本概念34
2.3制备方法35
2.4形成机理37
2.4.1理论研究和系统复杂性37
2.4.2步:阶段1 H2SO4-GIC的形成38
2.4.3第二步:阶段1 H2SO4-GIC转化为PGO39
2.4.4 PGO结构41
2.4.5第三步:PGO的剥离43
2.5与水接触时PGO化学结构的转变44
2.6化学结构和酸性的起源46
2.6.1结构模型和真实的结构46
2.6.2酸性的来源和动态结构模型52
2.7缺陷密度和含氧功能化石墨烯59
2.7.1通过Charpy-Hummers方法含氧功能化石墨烯59
2.7.2从石墨硫酸含氧功能化石墨烯63
2.8应对两组分结构模型的挑战66
2.9块状氧化石墨的结构70
2.10总结74
参考文献74
第3章 表征技术78
3.1氧化石墨烯核磁共振谱78
3.1.1固态核磁共振谱78
3.1.2氧化石墨烯的核磁共振谱79
3.1.3讨论85
3.2红外谱86
3.3 X射线光电子能谱89
3.4拉曼谱92
3.4.1概述92
3.4.2分子的拉曼谱93
3.4.3石墨烯、GO和RGO的拉曼谱93
3.4.4石墨烯的缺陷95
3.4.5 GO 和RGO的拉曼谱98
3.4.6统计拉曼显微镜(SRM)100
3.4.7展望103
3.5显微镜方法103
3.5.1扫描电子显微镜103
3.5.2原子力显微镜104
3.5.3透射电子显微镜106
3.5.4高分辨率透射电子显微镜107
参考文献110
第4章 氧化石墨烯分散体的流变性112
4.1氧化石墨烯分散体的液晶特性112
4.1.1液晶和Onsager理论112
4.1.2向列相碳纳米材料112
4.2 GO液晶水系分散体的流变特性114
4.2.1动态剪切特性115
4.2.2均匀剪切特性118
4.2.3结构的恢复122
4.2.4调整GO分散体的流变性以实现可控制备123
4.2.5具有极大Kerr系数的电光开关125
4.3与其他体系的比较127
4.3.1与含水聚合物基质体系比较127
4.3.2 GO和氧化碳纳米管水分散体的比较:维度的作用129
4.4总结和展望130
参考文献131
第5章 氧化石墨烯的光学性质135
5.1引言135
5.2吸收特性135
5.3拉曼散射140
5.4光致发光142
5.5氧化石墨烯的量子点153
5.6应用154
参考文献155
第6章 氧化石墨烯的功能化与还原160
6.1引言160
6.2氧化石墨烯的结构161
6.3氧化石墨烯的稳定性163
6.3.1氧化石墨烯的热稳定性163
6.3.2氧化石墨烯在水溶液中的稳定性及化学性质163
6.3.3含氧功能化石墨烯的稳定性166
6.4非共价化学反应168
6.5共价键化学反应170
6.5.1主要在平面上发生的反应171
6.5.2平面上C-C键形成的认识174
6.5.3边缘处的反应175
6.6氧化石墨烯的还原与歧化182
6.6.1还原182
6.6.2歧化作用185
6.6.3还原方法188
6.6.4含氧功能化石墨烯的还原190
6.7与还原氧化石墨烯的反应193
6.8氧化石墨烯可控的化学性质195
6.8.1多分散以及功能化石墨烯的命名196
6.8.2氧化石墨烯中的硫酸酯——热重分析197
6.8.3含氧功能化石墨烯的合成修饰197
6.9讨论203
参考文献204
第2部分 应用
第7章 场效应晶体管、传感器与透明导电膜212
7.1场效应晶体管212
7.2传感器216
7.2.1气体传感器217
7.2.2湿度传感器217
7.2.3生物传感器220
7.3还原氧化石墨烯透明导电膜221
7.4基于氧化石墨烯的忆阻器224
7.4.1器件的制备225
7.4.2转换机理226
参考文献228
第8章 能量收集及存储235
8.1太阳电池235
8.2锂离子电池236
8.2.1概述236
8.2.2电化学原理236
8.2.3负极应用239
8.2.4正极应用247
8.2.5新兴应用251
8.3超级电容器255
8.3.1概述255
8.3.2电化学基础255
8.3.3纯碳电极256
8.3.4赝电容特性的氧化石墨烯基复合电极263
8.4研究展望及发展机会266
参考文献267
第9章 氧化石墨烯膜应用于分子筛271
9.1氧化石墨烯膜的出现:两种方式271
9.2氧化石墨烯膜:基于结构概述272
9.3氧化石墨烯膜应用于分子筛274
9.4氧化石墨烯膜应用于水净化和海水淡化领域278
9.5膜的其他应用283
9.5.1燃料电池膜283
9.5.2新一代电池的离子选择性膜284
9.5.3脱水应用284
9.6总结及研究展望284
参考文献285
第10章 氧化石墨烯基复合材料287
10.1引言287
10.1.1石墨与聚合物288
10.1.2氧化石墨基复合材料290
10.1.3碳纳米管与石墨烯(氧化石墨烯)291
10.2将氧化石墨烯与聚合物混合的原因295
10.2.1制备高强聚合物:机械性能296
10.2.2电学性能303
10.2.3热传导性308
10.2.4阻隔性能310
10.3石墨烯与氧化石墨烯312
10.3.1尺寸效应313
10.3.2介质对氧化石墨烯结构的影响313
10.3.3提纯工艺316
10.3.4热不稳定性317
10.3.5健康问题317
10.3.6环境影响319
10.4总结320
参考文献320
第11章 氧化石墨烯毒理学研究与生物医学应用332
11.1引言332
11.2氧化石墨烯毒理性333
11.3毒理机制334
11.3.1膜目标334
11.3.2氧化应激335
11.3.3其他因素337
11.4氧化石墨烯生物医学应用337
11.4.1氧化石墨烯在癌症和细菌感染治疗中的应用337
11.4.2光热疗法337
11.4.3氧化石墨烯作为药物载体339
11.5生物分析应用342
致谢344
参考文献345
第12章 催化348
12.1引言348
12.2氧化石墨烯性质348
12.3氧化活性350
12.3.1氧化石墨烯的氧化反应350
12.3.2硫化物氧化356
12.3.3功能化材料358
12.4聚合反应359
12.5氧还原反应360
12.6 Friedel-Crafts和Michael加成363
12.7光催化364
12.8其他层状碳基材料和GO复合材料的催化活性364
12.8.1未功能化碳基纳米材料364
12.8.2混合催化剂和选择性的应用364
12.9展望368
参考文献368
第13章 工业化生产氧化石墨烯的挑战373
13.1引言373
13.2石墨烯市场的范围和规模373
13.3氧化石墨烯合成376
13.4氧化石墨烯生产中的问题377
13.4.1石墨来源377
13.4.2反应条件379
13.4.3处理及提纯382
13.4.4存储、处理及质量控制385
13.5现有成就及未来发展方向386
参考文献387
术语391
原书序
原书前言
本书主编
本书参编
第1部分 基本原理
第1章 氧化石墨烯的沿革——从起源到石墨烯热潮2
1.1引言2
1.2氧化石墨烯制备4
1.2.1改进和简化氧化石墨烯制备的试验4
1.2.2石墨的过氧化6
1.2.3形成机理——首次近似7
1.3重要含氧官能团的发现以及相关结构模型的发展9
1.3.1石墨氧化物成分解析9
1.3.2 1930~2006年结构模型的创造10
1.3.3形成机理的考虑——第二次近似14
1.4氧化石墨烯性质16
1.4.1热降解和它的产物16
1.4.2化学还原反应17
1.4.3与酸和碱的反应19
1.4.4“渗透膨胀”:水合作用和胶体形成19
1.4.5氧化石墨烯的酸性21
1.4.6插层和功能化反应24
1.4.7官能团以及它们对氧化石墨烯形成和破坏的反应与关系25
1.5总结26
参考文献27
第2章 氧化石墨烯的形成机理和化学结构33
2.1引言33
2.2结构的基本概念34
2.3制备方法35
2.4形成机理37
2.4.1理论研究和系统复杂性37
2.4.2步:阶段1 H2SO4-GIC的形成38
2.4.3第二步:阶段1 H2SO4-GIC转化为PGO39
2.4.4 PGO结构41
2.4.5第三步:PGO的剥离43
2.5与水接触时PGO化学结构的转变44
2.6化学结构和酸性的起源46
2.6.1结构模型和真实的结构46
2.6.2酸性的来源和动态结构模型52
2.7缺陷密度和含氧功能化石墨烯59
2.7.1通过Charpy-Hummers方法含氧功能化石墨烯59
2.7.2从石墨硫酸含氧功能化石墨烯63
2.8应对两组分结构模型的挑战66
2.9块状氧化石墨的结构70
2.10总结74
参考文献74
第3章 表征技术78
3.1氧化石墨烯核磁共振谱78
3.1.1固态核磁共振谱78
3.1.2氧化石墨烯的核磁共振谱79
3.1.3讨论85
3.2红外谱86
3.3 X射线光电子能谱89
3.4拉曼谱92
3.4.1概述92
3.4.2分子的拉曼谱93
3.4.3石墨烯、GO和RGO的拉曼谱93
3.4.4石墨烯的缺陷95
3.4.5 GO 和RGO的拉曼谱98
3.4.6统计拉曼显微镜(SRM)100
3.4.7展望103
3.5显微镜方法103
3.5.1扫描电子显微镜103
3.5.2原子力显微镜104
3.5.3透射电子显微镜106
3.5.4高分辨率透射电子显微镜107
参考文献110
第4章 氧化石墨烯分散体的流变性112
4.1氧化石墨烯分散体的液晶特性112
4.1.1液晶和Onsager理论112
4.1.2向列相碳纳米材料112
4.2 GO液晶水系分散体的流变特性114
4.2.1动态剪切特性115
4.2.2均匀剪切特性118
4.2.3结构的恢复122
4.2.4调整GO分散体的流变性以实现可控制备123
4.2.5具有极大Kerr系数的电光开关125
4.3与其他体系的比较127
4.3.1与含水聚合物基质体系比较127
4.3.2 GO和氧化碳纳米管水分散体的比较:维度的作用129
4.4总结和展望130
参考文献131
第5章 氧化石墨烯的光学性质135
5.1引言135
5.2吸收特性135
5.3拉曼散射140
5.4光致发光142
5.5氧化石墨烯的量子点153
5.6应用154
参考文献155
第6章 氧化石墨烯的功能化与还原160
6.1引言160
6.2氧化石墨烯的结构161
6.3氧化石墨烯的稳定性163
6.3.1氧化石墨烯的热稳定性163
6.3.2氧化石墨烯在水溶液中的稳定性及化学性质163
6.3.3含氧功能化石墨烯的稳定性166
6.4非共价化学反应168
6.5共价键化学反应170
6.5.1主要在平面上发生的反应171
6.5.2平面上C-C键形成的认识174
6.5.3边缘处的反应175
6.6氧化石墨烯的还原与歧化182
6.6.1还原182
6.6.2歧化作用185
6.6.3还原方法188
6.6.4含氧功能化石墨烯的还原190
6.7与还原氧化石墨烯的反应193
6.8氧化石墨烯可控的化学性质195
6.8.1多分散以及功能化石墨烯的命名196
6.8.2氧化石墨烯中的硫酸酯——热重分析197
6.8.3含氧功能化石墨烯的合成修饰197
6.9讨论203
参考文献204
第2部分 应用
第7章 场效应晶体管、传感器与透明导电膜212
7.1场效应晶体管212
7.2传感器216
7.2.1气体传感器217
7.2.2湿度传感器217
7.2.3生物传感器220
7.3还原氧化石墨烯透明导电膜221
7.4基于氧化石墨烯的忆阻器224
7.4.1器件的制备225
7.4.2转换机理226
参考文献228
第8章 能量收集及存储235
8.1太阳电池235
8.2锂离子电池236
8.2.1概述236
8.2.2电化学原理236
8.2.3负极应用239
8.2.4正极应用247
8.2.5新兴应用251
8.3超级电容器255
8.3.1概述255
8.3.2电化学基础255
8.3.3纯碳电极256
8.3.4赝电容特性的氧化石墨烯基复合电极263
8.4研究展望及发展机会266
参考文献267
第9章 氧化石墨烯膜应用于分子筛271
9.1氧化石墨烯膜的出现:两种方式271
9.2氧化石墨烯膜:基于结构概述272
9.3氧化石墨烯膜应用于分子筛274
9.4氧化石墨烯膜应用于水净化和海水淡化领域278
9.5膜的其他应用283
9.5.1燃料电池膜283
9.5.2新一代电池的离子选择性膜284
9.5.3脱水应用284
9.6总结及研究展望284
参考文献285
第10章 氧化石墨烯基复合材料287
10.1引言287
10.1.1石墨与聚合物288
10.1.2氧化石墨基复合材料290
10.1.3碳纳米管与石墨烯(氧化石墨烯)291
10.2将氧化石墨烯与聚合物混合的原因295
10.2.1制备高强聚合物:机械性能296
10.2.2电学性能303
10.2.3热传导性308
10.2.4阻隔性能310
10.3石墨烯与氧化石墨烯312
10.3.1尺寸效应313
10.3.2介质对氧化石墨烯结构的影响313
10.3.3提纯工艺316
10.3.4热不稳定性317
10.3.5健康问题317
10.3.6环境影响319
10.4总结320
参考文献320
第11章 氧化石墨烯毒理学研究与生物医学应用332
11.1引言332
11.2氧化石墨烯毒理性333
11.3毒理机制334
11.3.1膜目标334
11.3.2氧化应激335
11.3.3其他因素337
11.4氧化石墨烯生物医学应用337
11.4.1氧化石墨烯在癌症和细菌感染治疗中的应用337
11.4.2光热疗法337
11.4.3氧化石墨烯作为药物载体339
11.5生物分析应用342
致谢344
参考文献345
第12章 催化348
12.1引言348
12.2氧化石墨烯性质348
12.3氧化活性350
12.3.1氧化石墨烯的氧化反应350
12.3.2硫化物氧化356
12.3.3功能化材料358
12.4聚合反应359
12.5氧还原反应360
12.6 Friedel-Crafts和Michael加成363
12.7光催化364
12.8其他层状碳基材料和GO复合材料的催化活性364
12.8.1未功能化碳基纳米材料364
12.8.2混合催化剂和选择性的应用364
12.9展望368
参考文献368
第13章 工业化生产氧化石墨烯的挑战373
13.1引言373
13.2石墨烯市场的范围和规模373
13.3氧化石墨烯合成376
13.4氧化石墨烯生产中的问题377
13.4.1石墨来源377
13.4.2反应条件379
13.4.3处理及提纯382
13.4.4存储、处理及质量控制385
13.5现有成就及未来发展方向386
参考文献387
术语391
前 言
氧化石墨烯(GO)已成为近10年来研究广泛的材料之一。它促进了化学/物理和材料科学领域的大规模跨学科研究。由于其独特的性能,GO已成功通过多种应用测试。这一富有成果的研究领域已经产生了大量的出版物。一些综述文章总结了进展。然而截至目前,将所有已发表的研究进行系统化,并且帮助对这一领域感兴趣的非专家读者方面只做了少量工作。本书旨在完成这项任务,每章的内容和本书总体上都是从基础到复杂,以经典科学领域中典型的类别呈现。这使得本书与众不同,有别于其他文献。
今天,即使是专家也很难跟踪该领域近的所有出版物。对于非专业人员,通常是不可能去浏览这些浩瀚如海的出版物。由于现代GO领域普遍存在混淆,使得这一任务进一步复杂化。这种混淆主要源于基本概念的滥用,以及对GO化学结构的过度简化和误解。很难确定可信赖的高质量出版物,这些出版物正确使用基本化学术语,并正确解释实验数据。识别出正确采用基本化学术语,以及正确解释实验数据的可信的高质量论文是非常困难的。在本书中,打算基于可信赖的出版物表示GO真实的化学结构,并正确使用主要的基本概念,因为它们至今已被确定。
自2004年石墨烯时代开始以来,GO与石墨烯密切相关。那时,GO主要被认为是石墨烯的前驱体。术语“化学转化的石墨烯”(CCG)被引入用于还原的氧化石墨烯(RGO),以突出RGO具有石墨烯相似的性质。在文献中滥用术语“石墨烯”被错误地用来代替RGO,会造成非专家读者之间的重大混淆。本书的目标是通过在石墨烯和RGO之间划清界限,并通过展示它们的相似之处,以及它们的不同之处来帮助读者区分两者。更多的混淆源自于术语RGO被错误地用于通过热处理GO得到的材料。本书强调这两种材料是截然不同的,为后者引入术语“热处理氧化石墨烯”(tpGO)。
由于RGO的电学特性低于真实石墨烯的电学特性,GO通常被认为是石墨烯的“弟弟”,或者是低等级的石墨烯。直到2011年左右,这个观点才占据主导地位。后来证明,从基础科学的角度和实际应用来看,GO本身都是一种独特而有价值的材料。GO超越石墨烯的主要优点是其在水中和几种有机溶剂中的溶解性和可加工性好。GO的另一个好处是它具有多种化学改性功能,可以改变其性能。与石墨烯相比,以t为单位进行大规模生产的能力使得GO特别适用于应用。在本书中将展示GO的所有优点和独特之处。
本书分为两部分:第1部分重点介绍GO的基础知识;第2部分介绍GO的应用。
第1部分以GO的研究开始,它有一个非常漫长的历史。它并不是以2006年GO还原的研究工作开始,因为可以通过查看该时期某些出版物的引用指数来思考。整个20世纪在GO化学特性方面进行了非常严肃和深入的研究。与一些现代出版物相比,这些研究中大部分都是以好的老派传统进行的,在很多方面具有优势。科学思维的基本原理、研究的方法论以及重要的报告数据的可信度都处于现代GO领域相当罕见的水平。在设计自己的实验之前,通过研究那些早期的作品,可以很容易地避免对实验结果的误解。由于早期研究的重要性以及试图使这两个时代之间的联系成为可能,以20世纪所开展的GO研究的历史回顾作为本书开始(第1章)。这一章是由本领域长期开展研究的专家,即著名的Lerf-Klinowski结构模型建立者之一的Anton Lerf教授编写。
氧化石墨烯基本原理与应用在现代文献中,GO的结构极其简单。这导致误解涉及GO的化学反应。第2章由Ayrat M.Dimiev撰写,旨在阐明GO结构的某些方面。在典型的教科书形式中,GO的形成机理、在水溶液处理过程中的转变以及GO的精细化学结构在方法学上都有描述。就其固有的化学性质如水溶液的酸度来讨论GO的结构。
用于GO表征的方法在第3章中以教程方式给予了综述。这一章对进入该领域的研究人员特别重要,强调了不同方法的优缺点,讨论了几种不同方法有助于理解GO结构的例子。这一章由Siegfried Eigler和Ayrat M.Dimiev共同编写。
在水溶液中,GO剥离为单层片材并形成胶体溶液。从水溶液中,GO薄片可以转移到低分子量醇的相中;酒精的溶液和水溶液一样稳定不沉淀。在一定浓度下,GO溶液形成液晶。第4章由CristinaVallés综述了GO溶液的流变学。这一章将讨论GO的胶体化学、表面科学、流变学和液体化学。
由于其电子排布配置,GO具有许多显著的光学特性。与原始石墨烯相反,GO在紫外、可见和近红外区域显示出光致发光,这取决于其结构。这个发光的起源和其他相关问题在第5章中由Anton VNaumov讨论。
GO的化学特性是、难和有争议的话题。在Siegfried Eigler和Ayrat M.Dimiev撰写的第6章中,讨论了以下主题。首先回顾GO的热稳定性和化学稳定性,然后介绍湿化学非共价功能化方案。接下来讨论的GO的共价功能化是一个非常有争议的话题。当众所周知的有机化学原理应用于GO时,通过分析经过修饰的GO产物,来证明成功完成反应仍然具有挑战性。本书为一些选定实例的实验结果,提供了另一种解释来证明这一挑战。接下来,总结了化学还原方法,特别强调将真正的化学还原与所谓的“热还原”区分开来。在讨论GO化学性质时,与典型的GO平行,讨论了氧化功能化石墨烯(oxo-G1)的这些性质,这是一种具有非常低结构缺陷密度的GO。这进一步阐明了GO化学中缺陷的作用。后,介绍了oxo-G1的其他性质。oxo-G1可作为一种化合物,在设计和合成功能材料与器件方面能够控制化学特性。
第2部分对使用还原和非还原形式的GO的应用分别做了综述。还原形式的GO在导电性能需要的地方是非常重要的。这些应用利用RGO和tpGO的类石墨烯特性。
由于其二维特性,根据定义,真正的石墨烯不可用于批量生产。它作为一种基底支撑的材料,只有通过微机械剥离石墨,或者通过在活性催化金属表面化学气相沉积生长来获得。由于前者中存在许多缺陷或散射中心,因此RGO和tpGO的电导率比实际石墨烯低3或4个数量级。尽管如此,在需要大量石墨烯的应用中,GO衍生物是的选择。目前,使用RGO和tpGO进行的研究中,约90%在标题和摘要中都使用了术语“石墨烯”。本书强调,GO衍生物,而不是真正的石墨烯,用于第7章和第8章中综述的应用。
场效应晶体管和传感器是利用GO独特电子特性的两个有前景的应用。由于它的电学和力学性质、良好的载流子迁移率,以及可见范围透光性,RGO也被认为是制造具有许多应用的透明导电膜的候选者之一。第7章由Samuele Porro和Ignazio Roppolo撰写,总结了GO在上述领域应用的巨大潜力。
tpGO的导电性和高比表面积为其与先进能源系统的整合做出了巨大推动。在第8章中,讨论了将GO集成到两类主要的能量存储系统——锂离子电池和超级电容器中。对于可以实现性能的重要物化性质,以及用于获得这些独特益处的合成方法,给予特别的关注来理解和强调。本章由斯诺迪系统有限公司的首席技术官Cary Michael Hayner撰写,该公司是一家初创公司,开发基于GO新型电极材料的新一代锂离子电池。
由于GO薄片的二维特性及其在水中的溶解性,GO可以通过简单的滴铸或过滤构筑成薄膜。如此形成的GO膜对水分子表现出无阻碍的渗透性,对其他分子和原子是不可渗透的。GO和RGO在选择性膜中的应用在第9章中由Ho Bum Park、Hee Wook Yoon和Young Hoon Cho综述。
由于GO在水和有机溶剂中的可加工性,GO已经被尝试作为一种组分应用到许多复合材料中。将GO掺入聚合物会改变导电性和导热性、降低渗透性并改善力学性能。第10章由Mohsen Moazzami Gudarzi、Seyed Hamed Aboutalebi和Farhad Sharif介绍了这一主题。
GO的生物医学应用和毒性研究对于GO在实际应用中的使用至关重要。其他材料,如碳纳米管,被怀疑是有毒或致癌的。因此,目前在分析GO的医学特性和生物医学应用方面取得的进展由Larisa Kovbasyuk和Andriy Mokhir在第11章中介绍。
GO及其衍生物具有独特的性质,使它们成为氧化反应、Friedel-Crafts和Michael加成、聚合反应、氧还原反应和光催化作用的催化剂。这种性质由Ioannis V.Pavlidis在第12章中给予综述。
GO的大规模生产仍然是它商业化的关键。GO在商业上可行的关键因素是其成本效益。这不是一个简单的任务,因为GO生产涉及产生大量酸性废物和冗长的纯化程序。商业GO生产面临的挑战将在第13章由Sean E.Lowe和Yu Lin Zhong讨论。
本书由各领域的专业人士编写,旨在为更广阔的群体提供帮助,包括拓宽其研究领域的专家。
Ayrat M.Dimiev俄罗斯Siegfried Eigler瑞典
今天,即使是专家也很难跟踪该领域近的所有出版物。对于非专业人员,通常是不可能去浏览这些浩瀚如海的出版物。由于现代GO领域普遍存在混淆,使得这一任务进一步复杂化。这种混淆主要源于基本概念的滥用,以及对GO化学结构的过度简化和误解。很难确定可信赖的高质量出版物,这些出版物正确使用基本化学术语,并正确解释实验数据。识别出正确采用基本化学术语,以及正确解释实验数据的可信的高质量论文是非常困难的。在本书中,打算基于可信赖的出版物表示GO真实的化学结构,并正确使用主要的基本概念,因为它们至今已被确定。
自2004年石墨烯时代开始以来,GO与石墨烯密切相关。那时,GO主要被认为是石墨烯的前驱体。术语“化学转化的石墨烯”(CCG)被引入用于还原的氧化石墨烯(RGO),以突出RGO具有石墨烯相似的性质。在文献中滥用术语“石墨烯”被错误地用来代替RGO,会造成非专家读者之间的重大混淆。本书的目标是通过在石墨烯和RGO之间划清界限,并通过展示它们的相似之处,以及它们的不同之处来帮助读者区分两者。更多的混淆源自于术语RGO被错误地用于通过热处理GO得到的材料。本书强调这两种材料是截然不同的,为后者引入术语“热处理氧化石墨烯”(tpGO)。
由于RGO的电学特性低于真实石墨烯的电学特性,GO通常被认为是石墨烯的“弟弟”,或者是低等级的石墨烯。直到2011年左右,这个观点才占据主导地位。后来证明,从基础科学的角度和实际应用来看,GO本身都是一种独特而有价值的材料。GO超越石墨烯的主要优点是其在水中和几种有机溶剂中的溶解性和可加工性好。GO的另一个好处是它具有多种化学改性功能,可以改变其性能。与石墨烯相比,以t为单位进行大规模生产的能力使得GO特别适用于应用。在本书中将展示GO的所有优点和独特之处。
本书分为两部分:第1部分重点介绍GO的基础知识;第2部分介绍GO的应用。
第1部分以GO的研究开始,它有一个非常漫长的历史。它并不是以2006年GO还原的研究工作开始,因为可以通过查看该时期某些出版物的引用指数来思考。整个20世纪在GO化学特性方面进行了非常严肃和深入的研究。与一些现代出版物相比,这些研究中大部分都是以好的老派传统进行的,在很多方面具有优势。科学思维的基本原理、研究的方法论以及重要的报告数据的可信度都处于现代GO领域相当罕见的水平。在设计自己的实验之前,通过研究那些早期的作品,可以很容易地避免对实验结果的误解。由于早期研究的重要性以及试图使这两个时代之间的联系成为可能,以20世纪所开展的GO研究的历史回顾作为本书开始(第1章)。这一章是由本领域长期开展研究的专家,即著名的Lerf-Klinowski结构模型建立者之一的Anton Lerf教授编写。
氧化石墨烯基本原理与应用在现代文献中,GO的结构极其简单。这导致误解涉及GO的化学反应。第2章由Ayrat M.Dimiev撰写,旨在阐明GO结构的某些方面。在典型的教科书形式中,GO的形成机理、在水溶液处理过程中的转变以及GO的精细化学结构在方法学上都有描述。就其固有的化学性质如水溶液的酸度来讨论GO的结构。
用于GO表征的方法在第3章中以教程方式给予了综述。这一章对进入该领域的研究人员特别重要,强调了不同方法的优缺点,讨论了几种不同方法有助于理解GO结构的例子。这一章由Siegfried Eigler和Ayrat M.Dimiev共同编写。
在水溶液中,GO剥离为单层片材并形成胶体溶液。从水溶液中,GO薄片可以转移到低分子量醇的相中;酒精的溶液和水溶液一样稳定不沉淀。在一定浓度下,GO溶液形成液晶。第4章由CristinaVallés综述了GO溶液的流变学。这一章将讨论GO的胶体化学、表面科学、流变学和液体化学。
由于其电子排布配置,GO具有许多显著的光学特性。与原始石墨烯相反,GO在紫外、可见和近红外区域显示出光致发光,这取决于其结构。这个发光的起源和其他相关问题在第5章中由Anton VNaumov讨论。
GO的化学特性是、难和有争议的话题。在Siegfried Eigler和Ayrat M.Dimiev撰写的第6章中,讨论了以下主题。首先回顾GO的热稳定性和化学稳定性,然后介绍湿化学非共价功能化方案。接下来讨论的GO的共价功能化是一个非常有争议的话题。当众所周知的有机化学原理应用于GO时,通过分析经过修饰的GO产物,来证明成功完成反应仍然具有挑战性。本书为一些选定实例的实验结果,提供了另一种解释来证明这一挑战。接下来,总结了化学还原方法,特别强调将真正的化学还原与所谓的“热还原”区分开来。在讨论GO化学性质时,与典型的GO平行,讨论了氧化功能化石墨烯(oxo-G1)的这些性质,这是一种具有非常低结构缺陷密度的GO。这进一步阐明了GO化学中缺陷的作用。后,介绍了oxo-G1的其他性质。oxo-G1可作为一种化合物,在设计和合成功能材料与器件方面能够控制化学特性。
第2部分对使用还原和非还原形式的GO的应用分别做了综述。还原形式的GO在导电性能需要的地方是非常重要的。这些应用利用RGO和tpGO的类石墨烯特性。
由于其二维特性,根据定义,真正的石墨烯不可用于批量生产。它作为一种基底支撑的材料,只有通过微机械剥离石墨,或者通过在活性催化金属表面化学气相沉积生长来获得。由于前者中存在许多缺陷或散射中心,因此RGO和tpGO的电导率比实际石墨烯低3或4个数量级。尽管如此,在需要大量石墨烯的应用中,GO衍生物是的选择。目前,使用RGO和tpGO进行的研究中,约90%在标题和摘要中都使用了术语“石墨烯”。本书强调,GO衍生物,而不是真正的石墨烯,用于第7章和第8章中综述的应用。
场效应晶体管和传感器是利用GO独特电子特性的两个有前景的应用。由于它的电学和力学性质、良好的载流子迁移率,以及可见范围透光性,RGO也被认为是制造具有许多应用的透明导电膜的候选者之一。第7章由Samuele Porro和Ignazio Roppolo撰写,总结了GO在上述领域应用的巨大潜力。
tpGO的导电性和高比表面积为其与先进能源系统的整合做出了巨大推动。在第8章中,讨论了将GO集成到两类主要的能量存储系统——锂离子电池和超级电容器中。对于可以实现性能的重要物化性质,以及用于获得这些独特益处的合成方法,给予特别的关注来理解和强调。本章由斯诺迪系统有限公司的首席技术官Cary Michael Hayner撰写,该公司是一家初创公司,开发基于GO新型电极材料的新一代锂离子电池。
由于GO薄片的二维特性及其在水中的溶解性,GO可以通过简单的滴铸或过滤构筑成薄膜。如此形成的GO膜对水分子表现出无阻碍的渗透性,对其他分子和原子是不可渗透的。GO和RGO在选择性膜中的应用在第9章中由Ho Bum Park、Hee Wook Yoon和Young Hoon Cho综述。
由于GO在水和有机溶剂中的可加工性,GO已经被尝试作为一种组分应用到许多复合材料中。将GO掺入聚合物会改变导电性和导热性、降低渗透性并改善力学性能。第10章由Mohsen Moazzami Gudarzi、Seyed Hamed Aboutalebi和Farhad Sharif介绍了这一主题。
GO的生物医学应用和毒性研究对于GO在实际应用中的使用至关重要。其他材料,如碳纳米管,被怀疑是有毒或致癌的。因此,目前在分析GO的医学特性和生物医学应用方面取得的进展由Larisa Kovbasyuk和Andriy Mokhir在第11章中介绍。
GO及其衍生物具有独特的性质,使它们成为氧化反应、Friedel-Crafts和Michael加成、聚合反应、氧还原反应和光催化作用的催化剂。这种性质由Ioannis V.Pavlidis在第12章中给予综述。
GO的大规模生产仍然是它商业化的关键。GO在商业上可行的关键因素是其成本效益。这不是一个简单的任务,因为GO生产涉及产生大量酸性废物和冗长的纯化程序。商业GO生产面临的挑战将在第13章由Sean E.Lowe和Yu Lin Zhong讨论。
本书由各领域的专业人士编写,旨在为更广阔的群体提供帮助,包括拓宽其研究领域的专家。
Ayrat M.Dimiev俄罗斯Siegfried Eigler瑞典
评论
还没有评论。