描述
开 本: 16开纸 张: 胶版纸包 装: 平装-胶订是否套装: 否国际标准书号ISBN: 9787111569435丛书名: 数据科学与工程技术丛书
内容简介
本书介绍了大数据分析的多种模型、所涉及的算法和技术、实现大数据分析系统所需的工具以及大数据分析的具体应用。本书共16章。第1章为绪论,就大数据、大数据分析等概念进行了阐释,并对本书内容进行了概述;第2~7章介绍了关联分析模型、分类分析模型、聚类分析模型、结构分析模型和文本分析模型;第8章介绍大数据分析的数据预处理问题;第9章介绍降维方法;第10章介绍了数据仓库的概念、内涵、组成、体系结构和建立方法,还介绍了分布式数据仓库系统和内存数据仓库系统。第11章介绍大数据分析算法中的回归算法、关联规则挖掘算法、分类算法以及聚类算法的实现。第12~14章介绍了三种用于实现大数据分析算法的平台,即并行计算平台、流式计算平台和大图分析平台。第15章和第16章介绍两类大数据分析的具体应用,分别讲述了社会网络分析和推荐系统。本书可作为高等院校大数据相关专业的教学用书,也可以作为从事大数据相关工作的工程技术人员的参考用书。
目 录
目 录
序
前言
教学建议
第1章 绪论 1
1.1 什么是大数据 1
1.2 哪里有大数据 3
1.3 什么是大数据分析 4
1.4 大数据分析的过程、技术与难点 5
1.5 全书概览 8
小结 10
习题 10
第2章 大数据分析模型 11
2.1 大数据分析模型建立方法 11
2.2 基本统计量 13
2.2.1 全表统计量 14
2.2.2 皮尔森相关系数 15
2.3 推断统计 16
2.3.1 参数估计 16
2.3.2 假设检验 20
2.3.3 假设检验的阿里云实现 23
小结 28
习题 28
第3章 关联分析模型 30
3.1 回归分析 31
3.1.1 回归分析概述 31
3.1.2 回归模型的拓展 35
3.1.3 回归的阿里云实现 43
3.2 关联规则分析 52
3.3 相关分析 54
小结 57
习题 58
第4章 分类分析模型 60
4.1 分类分析的定义 60
4.2 判别分析的原理和方法 61
4.2.1 距离判别法 61
4.2.2 Fisher判别法 64
4.2.3 贝叶斯判别法 67
4.3 基于机器学习分类的模型 71
4.3.1 支持向量机 72
4.3.2 逻辑回归 74
4.3.3 决策树与回归树 75
4.3.4 k近邻 78
4.3.5 随机森林 78
4.3.6 朴素贝叶斯 81
4.4 分类分析实例 82
4.4.1 二分类实例 82
4.4.2 多分类实例 94
小结 101
习题 102
第5章 聚类分析模型 105
5.1 聚类分析的定义 105
5.1.1 基于距离的亲疏关系度量 105
5.1.2 基于相似系数的相似性度量 108
5.1.3 个体与类以及类间的亲疏关系度量 110
5.1.4 变量的选择与处理 111
5.2 聚类分析的分类 111
5.3 聚类有效性的评价 112
5.4 聚类分析方法概述 112
5.5 聚类分析的应用 113
5.6 聚类分析的阿里云实现 114
小结 119
习题 119
第6章 结构分析模型 122
6.1 短路径 122
6.2 链接排名 123
6.3 结构计数 125
6.4 结构聚类 126
6.5 社团发现 128
6.5.1 社团的定义 128
6.5.2 社团的分类 128
6.5.3 社团的用途 128
6.5.4 社团的数学定义 128
6.5.5 基于阿里云的社团发现 130
小结 132
习题 133
第7章 文本分析模型 135
7.1 文本分析模型概述 135
7.2 文本分析方法概述 136
7.2.1 SplitWord 136
7.2.2 词频统计 137
7.2.3 TF-IDF 138
7.2.4 PLDA 140
7.2.5 Word2Vec 147
小结 148
习题 149
第8章 大数据分析的数据预处理 150
8.1 数据抽样和过滤 150
8.1.1 数据抽样 150
8.1.2 数据过滤 154
8.1.3 基于阿里云的抽样和过滤实现 154
8.2 数据标准化与归一化 157
8.3 数据清洗 159
8.3.1 数据质量概述 159
8.3.2 缺失值填充 160
8.3.3 实体识别与真值发现 162
8.3.4 错误发现与修复 169
小结 171
习题 171
第9章 降维 173
9.1 特征工程 173
9.1.1 特征工程概述 173
9.1.2 特征变换 175
9.1.3 特征选择 178
9.1.4 特征重要性评估 183
9.2 主成分分析 191
9.2.1 什么是主成分分析 191
9.2.2 主成分分析的计算过程 192
9.2.3 基于阿里云的主成分分析 194
9.2.4 主成分的表现度量 195
9.3 因子分析 196
9.3.1 因子分析概述 196
9.3.2 因子分析的主要分析指标 196
9.3.3 因子分析的计算方法 197
9.4 压缩感知 203
9.4.1 什么是压缩感知 203
9.4.2 压缩感知的具体模型 204
9.5 面向神经网络的降维 205
9.5.1 面向神经网络的降维方法概述 205
9.5.2 如何利用神经网络降维 206
9.6 基于特征散列的维度缩减 207
9.6.1 特征散列方法概述 207
9.6.2 特征散列算法 207
9.7 基于Lasso算法的降维 208
9.7.1 Lasso方法简介 208
9.7.2 Lasso方法 209
9.7.3 Lasso算法的适用情景 211
小结 211
习题 212
第10章 面向大数据的数据仓库系统 214
10.1 数据仓库概述 214
10.1.1 数据仓库的基本概念 214
10.1.2 数据仓库的内涵 215
10.1.3 数据仓库的基本组成 215
10.1.4 数据仓库系统的体系结构 216
10.1.5 数据仓库的建立 217
10.2 分布式数据仓库系统 221
10.2.1 基于Hadoop的数据仓库系统 221
10.2.2 Shark:基于Spark的数据仓库系统 227
10.2.3 Mesa 228
10.3 内存数据仓库系统 231
10.3.1 SAP HANA 231
10.3.2 HyPer 234
10.4 阿里云数据仓库简介 236
小结 238
习题 239
第11章 大数据分析算法 240
11.1 大数据分析算法概述 240
11.2 回归算法 242
11.3 关联规则挖掘算法 248
11.4 分类算法 255
11.4.1 二分类算法 256
11.4.2 多分类算法 273
11.5 聚类算法 283
11.5.1 k-means算法 283
11.5.2 CLARANS算法 291
小结 293
习题 293
第12章 大数据计算平台 295
12.1 Spark 295
12.1.1 Spark简介 295
12.1.2 基于Spark的大数据分析实例 296
12.2 Hyracks 299
12.2.1 Hyracks简介 299
12.2.2 基于Hyracks的大数据分析实例 299
12.3 DPark
序
前言
教学建议
第1章 绪论 1
1.1 什么是大数据 1
1.2 哪里有大数据 3
1.3 什么是大数据分析 4
1.4 大数据分析的过程、技术与难点 5
1.5 全书概览 8
小结 10
习题 10
第2章 大数据分析模型 11
2.1 大数据分析模型建立方法 11
2.2 基本统计量 13
2.2.1 全表统计量 14
2.2.2 皮尔森相关系数 15
2.3 推断统计 16
2.3.1 参数估计 16
2.3.2 假设检验 20
2.3.3 假设检验的阿里云实现 23
小结 28
习题 28
第3章 关联分析模型 30
3.1 回归分析 31
3.1.1 回归分析概述 31
3.1.2 回归模型的拓展 35
3.1.3 回归的阿里云实现 43
3.2 关联规则分析 52
3.3 相关分析 54
小结 57
习题 58
第4章 分类分析模型 60
4.1 分类分析的定义 60
4.2 判别分析的原理和方法 61
4.2.1 距离判别法 61
4.2.2 Fisher判别法 64
4.2.3 贝叶斯判别法 67
4.3 基于机器学习分类的模型 71
4.3.1 支持向量机 72
4.3.2 逻辑回归 74
4.3.3 决策树与回归树 75
4.3.4 k近邻 78
4.3.5 随机森林 78
4.3.6 朴素贝叶斯 81
4.4 分类分析实例 82
4.4.1 二分类实例 82
4.4.2 多分类实例 94
小结 101
习题 102
第5章 聚类分析模型 105
5.1 聚类分析的定义 105
5.1.1 基于距离的亲疏关系度量 105
5.1.2 基于相似系数的相似性度量 108
5.1.3 个体与类以及类间的亲疏关系度量 110
5.1.4 变量的选择与处理 111
5.2 聚类分析的分类 111
5.3 聚类有效性的评价 112
5.4 聚类分析方法概述 112
5.5 聚类分析的应用 113
5.6 聚类分析的阿里云实现 114
小结 119
习题 119
第6章 结构分析模型 122
6.1 短路径 122
6.2 链接排名 123
6.3 结构计数 125
6.4 结构聚类 126
6.5 社团发现 128
6.5.1 社团的定义 128
6.5.2 社团的分类 128
6.5.3 社团的用途 128
6.5.4 社团的数学定义 128
6.5.5 基于阿里云的社团发现 130
小结 132
习题 133
第7章 文本分析模型 135
7.1 文本分析模型概述 135
7.2 文本分析方法概述 136
7.2.1 SplitWord 136
7.2.2 词频统计 137
7.2.3 TF-IDF 138
7.2.4 PLDA 140
7.2.5 Word2Vec 147
小结 148
习题 149
第8章 大数据分析的数据预处理 150
8.1 数据抽样和过滤 150
8.1.1 数据抽样 150
8.1.2 数据过滤 154
8.1.3 基于阿里云的抽样和过滤实现 154
8.2 数据标准化与归一化 157
8.3 数据清洗 159
8.3.1 数据质量概述 159
8.3.2 缺失值填充 160
8.3.3 实体识别与真值发现 162
8.3.4 错误发现与修复 169
小结 171
习题 171
第9章 降维 173
9.1 特征工程 173
9.1.1 特征工程概述 173
9.1.2 特征变换 175
9.1.3 特征选择 178
9.1.4 特征重要性评估 183
9.2 主成分分析 191
9.2.1 什么是主成分分析 191
9.2.2 主成分分析的计算过程 192
9.2.3 基于阿里云的主成分分析 194
9.2.4 主成分的表现度量 195
9.3 因子分析 196
9.3.1 因子分析概述 196
9.3.2 因子分析的主要分析指标 196
9.3.3 因子分析的计算方法 197
9.4 压缩感知 203
9.4.1 什么是压缩感知 203
9.4.2 压缩感知的具体模型 204
9.5 面向神经网络的降维 205
9.5.1 面向神经网络的降维方法概述 205
9.5.2 如何利用神经网络降维 206
9.6 基于特征散列的维度缩减 207
9.6.1 特征散列方法概述 207
9.6.2 特征散列算法 207
9.7 基于Lasso算法的降维 208
9.7.1 Lasso方法简介 208
9.7.2 Lasso方法 209
9.7.3 Lasso算法的适用情景 211
小结 211
习题 212
第10章 面向大数据的数据仓库系统 214
10.1 数据仓库概述 214
10.1.1 数据仓库的基本概念 214
10.1.2 数据仓库的内涵 215
10.1.3 数据仓库的基本组成 215
10.1.4 数据仓库系统的体系结构 216
10.1.5 数据仓库的建立 217
10.2 分布式数据仓库系统 221
10.2.1 基于Hadoop的数据仓库系统 221
10.2.2 Shark:基于Spark的数据仓库系统 227
10.2.3 Mesa 228
10.3 内存数据仓库系统 231
10.3.1 SAP HANA 231
10.3.2 HyPer 234
10.4 阿里云数据仓库简介 236
小结 238
习题 239
第11章 大数据分析算法 240
11.1 大数据分析算法概述 240
11.2 回归算法 242
11.3 关联规则挖掘算法 248
11.4 分类算法 255
11.4.1 二分类算法 256
11.4.2 多分类算法 273
11.5 聚类算法 283
11.5.1 k-means算法 283
11.5.2 CLARANS算法 291
小结 293
习题 293
第12章 大数据计算平台 295
12.1 Spark 295
12.1.1 Spark简介 295
12.1.2 基于Spark的大数据分析实例 296
12.2 Hyracks 299
12.2.1 Hyracks简介 299
12.2.2 基于Hyracks的大数据分析实例 299
12.3 DPark
前 言
前 言本书的缘起与成书过程大数据经过分析能够产生高价值,这无疑已在大数据火爆的今天成为共识,从而使得大数据分析在“大数据 ”涉及的领域(如工业、医疗、农业、教育等)有了广泛的应用。大数据分析的相关知识不仅是大数据行业的从业人员应该的,也是和大数据相关的各行各业的从业者需要了解的。
然而,人们对大数据分析的解读有多个不同方面。从“分析”的角度解读,大数据分析可以看作统计分析的延伸;从 “数据”的角度解读,大数据分析可以看作数据管理与挖掘的扩展;从“大”的角度解读,大数据分析可以看作数据密集高性能计算的具体化。
而大数据分析的有效实施也需要多个方面的知识。从分析的角度来讲,需要统计学、数据分析、机器学习等方面的知识;从数据处理的角度来讲,需要数据库、数据挖掘等方面的知识;从计算平台的角度来讲,需要并行系统和并行计算的知识。
上述多样化造成了目前大数据分析的教材和参考书的多样化:有些书重点介绍统计学或者机器学习知识,突出“分析”;有些书重点介绍实现平台和技术,突出“大”;有些书重点介绍数据挖掘知识及其应用,突出“数据”。笔者认为,这三类知识对大数据分析都是必不可少的,于是试图编写一本教材来融合这三类知识,给读者展示一个相对广阔的大数据分析图景。
也正是因为解读的角度和所需知识的多样化,本书的成书过程也比较曲折。在成书的过程中,笔者对大数据分析的认识也在不断加深,因而在编写过程中几次变换结构和体例。由于笔者主要从事数据相关工作,所以起初以大数据分析算法和相关技术为主,对数据分析模型方面的知识只是一笔带过。在和业内人士的交流中发现,对于很多读者来说,了解分析模型可能更重要,因为很多分析算法和大数据分析所需的技术都有平台实现,分析模型却需要了解业务的人来建立,于是笔者增加了较多数据分析模型方面的内容。而后通过和阿里云的合作,笔者又进一步了解了大数据分析的需求,于是增加了数据预处理等内容,并基于阿里云的技术和平台对书中的一些内容做了实现。这就是本书现在的版本。
本书的内容本书力求系统地介绍大数据分析过程中的模型、技术、实现平台和应用。考虑到不同部分的侧重不同,故采取了不同的写作方法,尽可能使本书的内容适合更多的读者阅读。
模型部分主要突出了大数据分析模型的描述方法。通过这一部分的学习,读者可以在不考虑实现的情况下,针对应用需求建立大数据分析模型,即使不了解实现平台和具体技术,读者也可以独立学习这部分内容。在实践中,可以将分析模型表达为R语言,甚至像阿里云提供的可视化工具中那样分析流程,即使不掌握算法等方面的技术,同样可以进行大数据分析。
当然,如果对大数据分析相关技术有深入了解,会更加快速有效地进行分析,因而技术部分介绍了大数据分析所涉及的技术,重点在于解决大数据分析的效率和可扩展性问题。
“工欲善其事,必先利其器”,有了好的开发平台,就可以有效地实现相关的技术,因而实现平台部分介绍了多种开发大数据分析系统的实现平台。
后两章针对“推荐系统”和“社交网络”这两个大数据分析的典型应用涉及的一些模型和技术进行了介绍,也是前面内容在应用中的具体体现。
“大数据”是一个比较宽泛的概念,本书围绕着分析过程进行讲解,突出大数据的特点,与大数据算法、大数据系统、大数据程序的编程实现、机器学习、统计学等书籍具有互补性,读者可以相互参考。
为方便读者的学习,笔者总结了一些大数据分析常用系统和工具的安装与配置方法,读者可登录华章网站(www.hzbook.com)在本书网页中下载文档。
本书没讲什么由于大数据分析涉及的内容过于宽泛,尽管笔者试图从多个角度介绍大数据分析,但是限于本书的写作周期和篇幅,有一些读者关心的内容并没有包括在本书之中,比如:
数据流分析算法神经网络/深度学习大数据可视化大图分析算法大数据分析技术在医疗、社会安全、教育、工业等多个领域的应用一方面,读者可以阅读相关的书籍了解这些领域的内容;另一方面,笔者也正在筹划,期望能够在本书的再版中列入上述内容。
致使用本书的教师本书涉及多方面内容,对于教学而言,本书适用于多门课程的教学,除了直接用于“大数据分析”或者“数据科学”课程的教学之外,还可以作为“数理统计”“数据挖掘”“机器学习”等课程的补充教材。
针对不同专业的教学,教师可以选择不同的内容。针对计算机科学专业的本科生或者研究生,可以全面讲授本书的内容,但深度和侧重点上可以有所差别。针对培养数据科学家的“数据科学”专业的学生,如果培养方案中没有计算机系统和算法相关的课程,可以重点讲授第1~7章的内容,第8~11章可以着重讲解技术的选用而不是原理,第15~16章着重讲解背景和模型,其中的算法部分可以略去。针对培养工程师的技术类课程或者培训,可以重点讲授第8~14章,第1~7章中对模型的介绍可以略去,仅通过例子
然而,人们对大数据分析的解读有多个不同方面。从“分析”的角度解读,大数据分析可以看作统计分析的延伸;从 “数据”的角度解读,大数据分析可以看作数据管理与挖掘的扩展;从“大”的角度解读,大数据分析可以看作数据密集高性能计算的具体化。
而大数据分析的有效实施也需要多个方面的知识。从分析的角度来讲,需要统计学、数据分析、机器学习等方面的知识;从数据处理的角度来讲,需要数据库、数据挖掘等方面的知识;从计算平台的角度来讲,需要并行系统和并行计算的知识。
上述多样化造成了目前大数据分析的教材和参考书的多样化:有些书重点介绍统计学或者机器学习知识,突出“分析”;有些书重点介绍实现平台和技术,突出“大”;有些书重点介绍数据挖掘知识及其应用,突出“数据”。笔者认为,这三类知识对大数据分析都是必不可少的,于是试图编写一本教材来融合这三类知识,给读者展示一个相对广阔的大数据分析图景。
也正是因为解读的角度和所需知识的多样化,本书的成书过程也比较曲折。在成书的过程中,笔者对大数据分析的认识也在不断加深,因而在编写过程中几次变换结构和体例。由于笔者主要从事数据相关工作,所以起初以大数据分析算法和相关技术为主,对数据分析模型方面的知识只是一笔带过。在和业内人士的交流中发现,对于很多读者来说,了解分析模型可能更重要,因为很多分析算法和大数据分析所需的技术都有平台实现,分析模型却需要了解业务的人来建立,于是笔者增加了较多数据分析模型方面的内容。而后通过和阿里云的合作,笔者又进一步了解了大数据分析的需求,于是增加了数据预处理等内容,并基于阿里云的技术和平台对书中的一些内容做了实现。这就是本书现在的版本。
本书的内容本书力求系统地介绍大数据分析过程中的模型、技术、实现平台和应用。考虑到不同部分的侧重不同,故采取了不同的写作方法,尽可能使本书的内容适合更多的读者阅读。
模型部分主要突出了大数据分析模型的描述方法。通过这一部分的学习,读者可以在不考虑实现的情况下,针对应用需求建立大数据分析模型,即使不了解实现平台和具体技术,读者也可以独立学习这部分内容。在实践中,可以将分析模型表达为R语言,甚至像阿里云提供的可视化工具中那样分析流程,即使不掌握算法等方面的技术,同样可以进行大数据分析。
当然,如果对大数据分析相关技术有深入了解,会更加快速有效地进行分析,因而技术部分介绍了大数据分析所涉及的技术,重点在于解决大数据分析的效率和可扩展性问题。
“工欲善其事,必先利其器”,有了好的开发平台,就可以有效地实现相关的技术,因而实现平台部分介绍了多种开发大数据分析系统的实现平台。
后两章针对“推荐系统”和“社交网络”这两个大数据分析的典型应用涉及的一些模型和技术进行了介绍,也是前面内容在应用中的具体体现。
“大数据”是一个比较宽泛的概念,本书围绕着分析过程进行讲解,突出大数据的特点,与大数据算法、大数据系统、大数据程序的编程实现、机器学习、统计学等书籍具有互补性,读者可以相互参考。
为方便读者的学习,笔者总结了一些大数据分析常用系统和工具的安装与配置方法,读者可登录华章网站(www.hzbook.com)在本书网页中下载文档。
本书没讲什么由于大数据分析涉及的内容过于宽泛,尽管笔者试图从多个角度介绍大数据分析,但是限于本书的写作周期和篇幅,有一些读者关心的内容并没有包括在本书之中,比如:
数据流分析算法神经网络/深度学习大数据可视化大图分析算法大数据分析技术在医疗、社会安全、教育、工业等多个领域的应用一方面,读者可以阅读相关的书籍了解这些领域的内容;另一方面,笔者也正在筹划,期望能够在本书的再版中列入上述内容。
致使用本书的教师本书涉及多方面内容,对于教学而言,本书适用于多门课程的教学,除了直接用于“大数据分析”或者“数据科学”课程的教学之外,还可以作为“数理统计”“数据挖掘”“机器学习”等课程的补充教材。
针对不同专业的教学,教师可以选择不同的内容。针对计算机科学专业的本科生或者研究生,可以全面讲授本书的内容,但深度和侧重点上可以有所差别。针对培养数据科学家的“数据科学”专业的学生,如果培养方案中没有计算机系统和算法相关的课程,可以重点讲授第1~7章的内容,第8~11章可以着重讲解技术的选用而不是原理,第15~16章着重讲解背景和模型,其中的算法部分可以略去。针对培养工程师的技术类课程或者培训,可以重点讲授第8~14章,第1~7章中对模型的介绍可以略去,仅通过例子
评论
还没有评论。