描述
开 本: 16开纸 张: 胶版纸包 装: 平装-胶订是否套装: 否国际标准书号ISBN: 9787111736899丛书名: 智能系统与技术丛书
1)领域专家联袂推荐,语义解析大赛获奖者撰写,满足工业级应用安全、精准需求,弥合大模型的不足。
2)剖析语义解析技术原理与实践,涵盖机器翻译、模板填充、强化学习、GNN、中间表达五大技术方向,并随书提供案例代码。
- 如何保证大模型输出内容的可靠性?
- 如何建立自然语言和形式逻辑之间的映射?
- 如何在工业级应用中将自然语言查询自动转换为SQL语言?
- 如何由浅入深地实现一个知识图谱问答系统?
- 如何使用预训练技术提高模型语义理解的能力?
- 如何通过数据增强的方法提升语义解析的效果?
- 在实际产品中如何应用语义解析技术?
以上所有问题都能在本书中找到答案!
语义解析技术能解决大模型无法保证输出的形式语言可靠性和输出答案真实性的问题。本书由语义解析大赛获奖者撰写,通过本书的学习,读者可以了解NLP的相关技术,掌握自然语言生成SQL和知识图谱问答的实现方法。
本书从逻辑上分为三部分。
第一部分(第1章):从具体的语义解析问题入手,引出了各种主流技术,讨论了不同技术方案的对比和实现路径,并比较了不同数据集和技术路线的实验效果。
第二部分(第2~6章):详细讲解了5种语义解析技术路线,即基于机器翻译、模板填充、强化学习、GNN、中间表达的技术原理与实现示例。
第三部分(第7~11章):讲解了如何从零开始构建一个语义解析系统,并针对NL2SQL和知识图谱问答的不同应用场景提供实践方案。同时,阐述了在产品中落地语义解析技术可能遇到的问题和应对技巧。
C O N T E N T S
目录序
前言
第1章NL2SQL和KBQA中的语义
解析技术1
11人机交互应用与语义解析
难点分析1
12主流的语义解析技术5
121NL2SQL任务及方法5
122KBQA任务及方法12
123语义解析技术方案对比17
13语义解析的预训练模型和
数据集19
131语义解析中的预训练模型19
132NL2SQL数据集19
133KBQA数据集21
14本章小结23第2章基于机器翻译的语义解析
技术24
21机器翻译原理浅析24
211常见机器翻译技术路线24
212神经网络机器翻译基本框架26
22NL2SQL翻译框架的构建27
221Seq2Seq模型原理27
222将Seq2Seq模型应用于
NL2SQL28
23从序列到集合:SQLNet
模型的解决方案28
231序列到集合29
232列名注意力29
233SQLNet模型预测及其训练
细节30
24T5预训练模型在NL2SQL中的
应用31
241T5模型简介31
242T5模型架构32
243T5模型训练方式32
244T5模型在NL2SQL中的
应用33
25NL2SQL的T5模型实践33
26本章小结43第3章基于模板填充的语义解析
技术44
31意图识别和槽位填充44
311意图识别和槽位填充的
步骤45
312如何进行意图识别和槽位
填充46
32基于X-SQL的模板定义与子
任务分解48
33本章小结49第4章基于强化学习的语义解析
技术50
41Seq2Seq中的强化学习
知识50
42SCST模型51
421SCST模型简介52
422SCST模型框架52
423SCST代码实现52
43MAPO模型62
431MAPO模型简介62
432MAPO代码实现63
44本章小结67第5章基于GNN的语义解析
技术68
51使用GNN对数据库模式进行
编码68
511匹配可能模式项的集合69
512GNN编码表示69
52关注模式的Global GNN71
521Global GNN的改进71
522Gating GCN模块详解72
523Re-ranking GCN模块详解75
53关注模式链接的RATSQL79
531Relation-Aware Self-Attention
模型80
532考虑更复杂的连接关系80
533模式链接的具体实现81
54关注模式链接拓扑结构的
LGESQL83
541LGESQL模型简介83
542LGESQL模型框架86
55本章小结87第6章基于中间表达的语义解析
技术88
61中间表达:IRNet88
62引入中间表达层SemQL90
63IRNet代码精析92
631模式链接代码实现92
632SemQL的生成95
633SQL语句的生成101
64本章小结107第7章面向无嵌套简单SQL查询的
原型系统构建108
71语义匹配解决思路108
72任务简介109
73任务解析110
731列名解析110
732输入整合111
733输出子任务解析111
734模型整体架构112
74代码示例113
741QueryTokenizer类的构造113
742SqlLabelEncoder类的
构造115
743生成批量数据115
744模型搭建117
745模型训练和预测118
75本章小结120第8章面向复杂嵌套SQL查询的
原型系统构建121
81复杂嵌套SQL查询的难点
剖析121
811复杂嵌套SQL语句121
812难点与对策分析122
82型模型解析123
821构建复杂SQL语句的中间
表达形式123
822型模型的搭建与训练124
83列模型解析127
831嵌套信息的编码设计127
832列模型的搭建与训练127
84值模型解析130
841值与列的关系解析130
842值模型的搭建与训练130
85完整系统演示132
851解码器132
852完整流程演示133
86本章小结134第9章面向SPARQL的原型系统
构建135
91T5、BART、UniLM模型
简介135
92T5、BART、UniLM方案136
93T5、BART、UniLM生成
SPARQL语句实现141
94T5、BART、UniLM模型结果
合并156
95路径排序160
96SPARQL语句修正和再次
排序172
97本章小结185第10章预训练优化186
101预训练技术的发展186
1011掩码语言建模187
1012去噪自动编码器189
102定制预训练模型:
TaBERT192
1021信息的联合表示192
1022预训练任务设计192
103TAPAS194
1031附加Embedding编码表
结构194
1032预训练任务设计195
104GRAPPA195
1041表格数据增强:解决数据
稀疏难题195
1042预训练任务设计195
105本章小结197第11章语义解析技术落地思考198
111研究与落地的差别198
112产品视角的考虑200
113潜在的落地场景200
114实践技巧201
1141数据增强在NLP领域的
应用201
1142数据增强策略202
1143方案创新点204
115本章小结205
这是一本探讨NLP技术实践的书,其核心内容是语义解析技术的多种技术路线,涵盖了机器翻译、模板填充、强化学习、GNN以及中间表达等多个方向。作者显维是一位多次在算法竞赛中获奖的专家,在NLP技术领域有着丰富的实践经验。本书也是基于其多年实践经验和技术思考编写而成。本书包含了众多的代码实现,让读者能够深入了解语义解析技术的原理和应用。此外,本书还探讨了技术的落地思考和原型系统构建,帮助读者更好地将技术应用于实践中。总之,这本书是一本深入浅出、实用性极高的技术参考书,对想要深入了解语义解析技术和将其应用于实践的读者来说,是一本不容错过的好书。
——苏海波,百分点科技首席算法科学家
本书着眼于特定领域或不开放知识库的问答系统构建,该项研究与通用知识问答具有很强的互补性,可能会成为下一个阶段的研发和创业热点。本书的推出非常及时,有利于读者迅速进入该领域并进行产品研发。本书主要作者易显维在机器学习、知识图谱和强化学习等领域都进行过大量的工程实践,同时他也十分乐于分享自己的心得体会和最新进展。本书完整地记载了他和团队科研突破的实战经验,既有深度又有广度,干货满满。无论是正在从事这方面研究的同行,还是NLP和知识图谱的初学者,本书都具有非常好的阅读价值。
——虞凡,东风畅行科技首席技术官
如果你正在找有关NL2SQL的中文教程,这本书可能是不错的选择。全书介绍了5种主要语义解析技术在NL2SQL任务上的应用,并通过无嵌套SQL、复杂嵌套SQL、知识图谱问答、表格预训练、竞赛方案解析等示例,翔实地介绍了NL2SQL落地实践技巧。全书配套了大量实现代码,具有高度的实践指导性。
——张啸宇,三次NL2SQL挑战赛冠军
评论
还没有评论。