描述
开 本: 16开纸 张: 胶版纸包 装: 平装-胶订是否套装: 否国际标准书号ISBN: 9787111611516
读者对象:
1、使用OpenCV和Python的的计算机视觉新手;2、计算机视觉工程师;3、从初级到高级的各级学生、教师、研究人员;4、其他对计算机视觉和OpenCV感兴趣的人员。
OpenCV是一个综合了经典和先进计算机视觉、机器学习算法的开源库。通过与Python Anaconda版本结合,你就可以获取你所需要的所有开源计算库。
本书首先介绍分类和回归等统计学习的基本概念,然后详细讲解决策树、支持向量机和贝叶斯网络等算法,以及如何把它们与其他OpenCV函数结合,*后还会介绍时下热门主题——深度学习。通过本书的学习,你将掌握大量实用机器学习技巧,并依据书中提供的代码或从零开发自己的算法,解决实际问题。
通过阅读本书,你将:
·学习并高效使用OpenCV的机器学习模块
·使用Python学习用于计算机视觉领域的深度学习技术
·掌握线性回归和归一化技巧
·对花卉品种、手写数字和行人等物体进行分类
·学习支持向量机、提升决策树和随机森林的高效使用方法
·学习使用神经网络和深度学习解决现实问题
·使用k均值聚类发现数据的隐藏结构
·掌握数据预处理和特征工程
本书是一本基于OpenCV和Python的机器学习实战手册,既详细介绍机器学习及OpenCV相关的基础知识,又通过具体实例展示如何使用OpenCV和Python实现各种机器学习算法,并提供大量示列代码,可以帮助你掌握机器学习实用技巧,解决各种不同的机器学习和图像处理问题。
全书共12章,第1章简要介绍机器学习基础知识,并讲解如何安装OpenCV和Python工具;
第2章展示经典的机器学习处理流程及OpenCV和Python工具的使用;
第3章讨论监督学习算法,以及如何使用OpenCV实现这些算法;
第4章讨论数据表示和特征工程,并介绍OpenCV中提供的用于处理图像数据的常见特征提取技术;
第5章展示如何使用OpenCV构建决策树进行医疗诊断;
第6章讨论如何使用OpenCV构建支持向量机检测行人;
第7章介绍概率论,并展示如何使用贝叶斯学习实现垃圾邮件过滤;
第8章讨论一些非监督学习算法;
第9章详细讲解如何构建深度神经网络来识别手写数字;
第10章讨论如何高效地集成多个算法来提升性能;
第11章讨论如何比较不同分类器的结果,选择合适的工具;
第12章给出一些处理实际机器学习问题的提示和技巧。
译者序
序
前言
审校者简介
第1章 品味机器学习 1
1.1 初步了解机器学习 1
1.2 机器学习可以解决的事情 3
1.3 初步了解 Python 4
1.4 初步了解 OpenCV 4
1.5 安装 5
1.5.1 获取本书的代码 5
1.5.2 掌握 Python Anaconda 6
1.5.3 在 conda 环境中安装OpenCV 8
1.5.4 验证安装结果 9
1.5.5 一睹 OpenCV ML 模块 11
1.6 总结 11
第2章 使用 OpenCV 和 Python处理数据 12
2.1 理解机器学习流程 12
2.2 使用 OpenCV 和 Python 处理数据 14
2.2.1 创建一个新的 IPython 或 Jupyter 会话 15
2.2.2 使用 Python 的 NumPy包处理数据 16
2.2.3 在 Python 中载入外部数据集 20
2.2.4 使用 Matplotlib 进行数据可视化 21
2.2.5 使用C 中 OpenCV 的 TrainData 容器处理数据 26
2.3 总结 27
第3章 监督学习的步 28
3.1 理解监督学习 28
3.1.1 了解 OpenCV 中的监督学习 29
3.1.2 使用评分函数评估模型性能 30
3.2 使用分类模型预测类别 35
3.2.1 理解 k-NN 算法 37
3.2.2 使用 OpenCV实现 k-NN 37
3.3 使用回归模型预测连续结果 43
3.3.1 理解线性回归 43
3.3.2 使用线性回归预测波士顿房价 44
3.3.3 应用 Lasso 回归和ridge 回归 48
3.4 使用逻辑回归对鸢尾花种类进行分类 48
3.5 总结 53
第4 数据表示与特征工程 54
4.1 理解特征工程 54
4.2 数据预处理 55
4.2.1 特征标准化 56
4.2.2 特征归一化 57
4.2.3 特征缩放到一定的范围 57
4.2.4 特征二值化 58
4.2.5 缺失数据处理 58
4.3 理解降维 59
4.3.1 在OpenCV 中实现主成分分析 61
4.3.2 实现独立成分分析 64
4.3.3 实现非负矩阵分解 65
4.4 类别变量表示 66
4.5 文本特征表示 68
4.6 图像表示 69
4.6.1 使用色彩空间 69
4.6.2 图像角点检测 71
4.6.3 使用尺度不变特征变换 72
4.6.4 使用加速健壮特征 74
4.7 总结 75
第5章 使用决策树进行医疗诊断 76
5.1 理解决策树 76
5.1.1 构建个决策树 79
5.1.2 可视化训练得到的决策树 85
5.1.3 深入了解决策树的内部工作机制 87
5.1.4 特征重要性评分 88
5.1.5 理解决策规则 89
5.1.6 控制决策树的复杂度 90
5.2 使用决策树进行乳腺癌的诊断 90
5.2.1 载入数据集 91
5.2.2 构建决策树 92
5.3 使用决策树进行回归 96
5.4 总结 99
第6章 使用支持向量机检测行人 100
6.1 理解线性支持向量机 100
6.1.1 学习决策边界 101
6.1.2 实现我们的个支持向量机 102
6.2 处理非线性决策边界 107
6.2.1 理解核机制 108
6.2.2 认识我们的核 109
6.2.3 实现非线性支持向量机 109
6.3 自然环境下的行人检测 110
6.3.1 获取数据集 111
6.3.2 初窥方向梯度直方图 113
6.3.3 生成负样本 114
6.3.4 实现支持向量机 116
6.3.5 模型自举 116
6.3.6 在更大的图像中检测行人 118
6.3.7 进一步优化模型 120
6.4 总结 121
第7章 使用贝叶斯学习实现垃圾邮件过滤 122
7.1 理解贝叶斯推断 122
7.1.1 概率论的短暂之旅 123
7.1.2 理解贝叶斯定理 124
7.1.3 理解朴素贝叶斯分类器 126
7.2 实现个贝叶斯分类器 127
7.2.1 创建一个练习数据集 127
7.2.2 使用一个正态贝叶斯分类器对数据分类 128
7.2.3 使用一个朴素贝叶斯分类器对数据分类 131
7.2.4 条件概率的可视化 132
7.3 使用朴素贝叶斯分类器对邮件分类 134
7.3.1 载入数据集 134
7.3.2 使用Pandas构建数据矩阵 136
7.3.3 数据预处理 137
7.3.4 训练正态贝叶斯分类器 138
7.3.5 使用完整的数据集进行训练 139
7.3.6 使用n-gram提升结果 139
7.3.7 使用TD-IDF提升结果 140
7.4 总结 141
第8章 使用非监督学习发现隐藏结构 142
8.1 理解非监督学习 142
8.2 理解k均值聚类 143
8.3 理解期望化 145
8.3.1 实现期望化解决方案 146
8.3.2 了解期望化的局限 148
8.4 使用k均值压缩色彩空间 154
8.4.1 真彩色调色板的可视化 154
8.4.2 使用k均值减少调色板 157
8.5 使用k均值对手写数字分类 159
8.5.1 载入数据集 159
8.5.2 运行k均值 159
8.6 把聚类组织成层次树 161
8.6.1 理解层次聚类 161
8.6.2 实现凝聚层次聚类 162
8.7 总结 163
第9章 使用深度学习对手写数字分类 164
9.1 理解McCulloch-Pitts神经元 164
9.2 理解感知器 167
9.3 实现个感知器 169
9.3.1 生成练习数据集 170
9.3.2 使用数据拟合感知器 171
9.3.3 评估感知器分类器 171
9.3.4 把感知器应用到线性不可分的数据上 173
9.4 理解多层感知器 174
9.4.1 理解梯度下降 175
9.4.2 使用反向传播训练多层感知器 178
9.4.3 在OpenCV中实现多层感知器 179
9.5 了解深度学习 183
9.6 手写数字分类 186
9.6.1 载入MNIST数据集 187
9.6.2 MNIST数据集预处理 188
9.6.3 使用OpenCV训练一个MLP 189
9.6.4 使用Keras训练一个深度神经网络 190
9.7 总结 192
第10章 组合不同算法为一个整体 193
10.1 理解集成方法 193
10.1.1 理解平均集成 195
10.1.2 理解提升集成 197
10.1.3 理解堆叠集成 200
10.2 组合决策树为随机森林 200
10.2.1 理解决策树的不足 200
10.2.2 实现个随机森林 204
10.2.3 使用scikit-learn实现一个随机森林 205
10.2.4 实现随机树 206
10.3 使用随机森林进行人脸识别 208
10.3.1 载入数据集 208
10.3.2 预处理数据集 209
10.3.3 训练和测试随机森林 210
10.4 实现AdaBoost 212
10.4.1 使用OpenCV实现AdaBoost 212
10.4.2 使用scikit-learn实现AdaBoost 213
10.5 组合不同模型为一个投票分类器 214
10.5.1 理解不同的投票机制 214
10.5.2 实现一个投票分类器 215
10.6 总结 217
第11章 通过超参数调优选择合适的模型 218
11.1 评估一个模型 218
11.1.1 评估模型错误的方法 219
11.1.2 评估模型正确的方法 220
11.1.3 选择好的模型 221
11.2 理解交叉验证 223
11.2.1 使用OpenCV手动实现交叉验证 225
11.2.2 使用scikit-learn进行k折交叉验证 226
11.2.3 实现留一法交叉验证 227
11.3 使用自举评估鲁棒性 228
11.4 评估结果的重要性 230
11.4.1 实现T检验 230
11.4.2 实现配对卡方检验 232
11.5 使用网格搜索进行超参数调优 233
11.5.1 实现一个简单的网格搜索 234
11.5.2 理解验证集的价值 235
11.5.3 网格搜索结合交叉验证 236
11.5.4 网格搜索结合嵌套交叉验证 238
11.6 使用不同评估指标来对模型评分 239
11.6.1 选择正确的分类指标 239
11.6.2 选择正确的回归指标 240
11.7 链接算法形成一个管道 240
11.7.1 用 scikit-learn 实现管道 241
11.7.2 在网格搜索中使用管道 242
11.8 总结 243
第12章 综合 244
12.1 着手处理一个机器学习问题 244
12.2 构建自己的估计器 245
12.2.1 使用C 编写自己的基于OpenCV的分类器 245
12.2.2 使用Python 编写自己的基于scikit-learn的分类器 247
12.3 今后的方向 249
12.4 总结 251
译 者 序
翻译一直是我的业余爱好之一,而机器学习和图像处理也是我工作的主要内容,因此非常荣幸可以成为本书的译者。这几年随着深度学习的火热,越来越多的人意识到了在非常多的应用场景下,机器学习具有非常高的应用价值。从AlphaGo大杀四方,到所谓的“刷脸”支付,再到近谷歌使用机器学习来替代B树索引,可以看到,我们现在正处在被机器学习全面改造的社会变革中!本书介绍了机器学习的基本概念和算法,使用Python这一AI领域常使用的编程语言,结合OpenCV和scikit-learn库,向我们揭开了机器学习的神秘面纱。OpenCV和scikit-learn都是非常著名的开源库,尤其是scikit-learn的文档,非常完善而且专业,是学习机器学习相关知识的绝佳资料。本书内容更偏实战,力图通过具体的例子讲解机器学习算法的基本知识和使用方法。因本人学识有限,书中难免存在谬误,还望读者指正!
?前 言
你能看到这里,我非常高兴,是时候来谈谈机器学习了。
机器学习已经不再是一个时髦的词汇,它在我们周围随处可见:保护你的电子邮件、自动在图片上标记朋友、预测你喜欢的电影。作为数据科学的一个子领域,机器学习让电脑可以通过经验来学习:通过收集历史数据来对未来进行预测。
而要被分析的数据是无穷无尽的!目前每天产生的数据量达到了2.5艾字节(约为10亿 GB)。你能相信吗?这些数据足够塞满1000万张蓝光光盘,或者相当于能够持续播放90年的高清视频。为了处理如此庞大的数据,诸如谷歌、亚马逊、微软和脸书这样的公司,投入了大量的人力物力到让我们可以随时随地从机器学习中获益——从你的手机应用扩展到连接着云端的超级计算机的数据平台开发上。
换句话说:现在是时候对机器学习进行投资了。如果你也希望成为机器学习从业人员,那么本书非常适合你!
不过先别急:你的应用并不需要像上面的例子一样规模巨大或者有影响力,才能从机器学习中获益。不积跬步,无以至千里。 因此,本书步会通过简单直接的例子,向你介绍统计学习的基础概念,比如分类和回归。如果你已经详细学习了机器学习, 本书将教会你如何学以致用。对了,如果你对这个领域一无所知也没关系——只要你好学即可。
当本书介绍完了所有的基础概念后,将会开始探索各种算法,比如决策树、支持向量机和贝叶斯网络,以及如何把它们与其他 OpenCV 功能结合。在这个过程中,你将会学习如何通过理解数据来理解任务,以及如何构建具有完整功能的机器学习管道。
你的机器学习技能将会随着本书的深入而提高,直到你准备接触这个领域热的话题:深度学习。结合如何针对任务选择正确工具的训练技巧,我们将确保你可以掌握所有的机器学习基础知识。
在本书的后部分,你将会准备好面对你自己的机器学习问题,要么基于现有的源代码构建,要么从零开始构建你自己的算法!
本书所涉及的内容
第1章将会简要介绍机器学习不同的子领域,并讲解如何安装 OpenCV 和 Python Anaconda 版本下的其他必要工具。
第2章将展示经典的机器学习处理流程,以及载入处理数据的时机。将会解释训练数据和测试数据之间的区别,以及如何使用 OpenCV 和 Python 载入、存储、处理数据并进行可视化。
第3章将会通过回顾一些核心概念来介绍监督学习的内容,比如分类和回归。你将会学到如何使用 OpenCV 实现一个简单的机器学习算法,如何对数据进行预测,以及如何评估模型。
第4章将会教你如何切身体会一些常见的、著名的机器学习数据集,以及如何从原始数据中提取感兴趣的内容。
第5章将会展示如何使用 OpenCV 构建决策树,以及如何在不同的分类问题和回归问题上使用它。
第6章将会解释如何使用 OpenCV 构建支持向量机,以及如何把它们应用于检测图像中的行人。
第7章将会介绍概率论,并展示如何使用贝叶斯推断来判断邮件是否为垃圾邮件。
第8章将会讨论一些非监督学习算法,比如 k 均值聚类算法和期望化算法,并展示如何使用它们从简单、无标签的数据集中提取隐藏的结构信息。
第9章将会把你带到令人激动的深度学习领域。从感知器和多层感知器开始,你将会学习如何构建深度神经网络来对 MNIST 数据集中的手写数字进行识别。
第10章将展示如何高效地集成多个算法,以克服单个学习器的弱点,让预测结果更加准确可靠。
第11章将会介绍模型选择的概念,帮助你针对手上的任务,从不同的机器学习算法中,选择合适的工具。
第12章将会总结本书,并对如何进一步学习机器学习,以及从哪里可以找到更高级话题信息,给出了一些有用的建议。
阅读本书你需要什么
你将需要一台电脑、Python Anaconda 以及学习的激情,非常多的激情。你可能会问:为什么使用 Python?答案很简单:由于它有大量的开源库和可以用于数据处理和交互的工具,这让它终成为数据科学的专属语言。
其中一个工具是Anaconda Python发行版,它可以提供所需的所有科学计算库,比如 NumPy、SciPy、Matplotlib、scikit-Learn 和 Pandas。此外,安装 OpenCV 仅仅只需一行代码。并不需要设置 cc 编译的选项开关或者从源码进行编译!我们将会在第1章中介绍如何安装 Python Anaconda。
如果你经常结合 C 使用 OpenCV,那也没有问题。但是,至少在本书的目标中,还是强烈建议你切换到 Python。C 主要应用于开发高性能代码或者构建实时应用。但在学习一项新的技能时,我相信 Python 从根本上说会是更好的语言选择,因为编写的代码少,你就有时间做更多的事情。相对于纠结 C 的语法细节,或者花费大量时间把数据从一种格式转换为另一种格式,Python 可以让你更加集中精力在手头的任务上:在机器学习领域变成专家。
样例代码下载
可以从 GitHub上下载本书版本的示例代码文件:http://github.com/mbeyeler/opencv-machine-learning。所有的代码以 MIT软件协议发布,因此可以按自己的需要自由地使用、修改和分享。同时也可以在不同的 Jupyter 笔记本中搜索里面的源代码。
在过去的几年中,我们的机器已经逐渐学会了如何观察。现在我们认为相机能检测到照片中的人脸是理所当然的事,那些社交软件甚至可以从我们上传的照片中识别出我们和我们的朋友。而在未来几年中,我们将会体验到更为剧烈的变化。不久以后,车辆可以自动驾驶,手机可以为我们阅读信息并翻译为任意语言,我们的X光片和其他的医疗图像可以被强大的算法读取并分析,从而做出准确的医疗诊断,甚至可以推荐高效的治疗方案。
这些变化的驱动力来自于不断提高的计算力、大量的图像数据以及大量来自于数学、统计学和计算机科学的聪明想法。这些快速发展的变化都汇聚在已经开始腾飞的机器学习技术中,不断影响着我们与世界、与他人的日常交流。在计算机视觉中,当前机器学习模式转变的一个明显特征,在于开源社区中有大量的志愿者、爱好者、科学家和工程师,他们免费开发和提供了大量的软件工具。这意味着,从根本上说,进入这个领域的门槛是有史以来*的:任何感兴趣的人都可以在图像处理中使用机器学习。
然而,就如同置身于一个充满岔路的公园一样,面对丰富的工具和想法以及快速开发这些想法的方法,都需要一个向导为你引路,指引正确的方向。对此, 我有一个好消息:通过浏览本书,你可以把我的同事和合作者 Michael Beyeler 博士当作你的向导。Michael 知识渊博,既是一个冷静的工程师、计算机科学家和神经系统科学家,也是多产的开源软件开发者。他不仅教会机器如何在复杂环境中观察和导航,让计算机模拟人脑活动,还经常指导人们如何使用编程来解决各种不同的机器学习和图像处理的难题。这意味着,你不仅可以从他丰富的专业知识和经验中获益,也会享受他在教授本书时的睿智和幽默。
另一个好消息是,这将会是一段令人兴奋的旅程。基于代码和数据像完成拼图一样,解决计算机视觉和机器学习中的问题,这种喜悦无以复加。如 Richard Feynman 所说的:“我所不能创造的东西,就是我没有理解的东西。”那么,亲自实践本书的代码示例(开源!),使自己变得更有创造性,理解也就随之而来了。
Ariel Rokem
数据科学家,华盛顿大学eScience研究所
评论
还没有评论。