描述
开 本: 16开纸 张: 胶版纸包 装: 平装-胶订是否套装: 是国际标准书号ISBN: 9000302002949
1. 凝聚知名图像处理专家8年深度学习算法的研究心得和实践经验。
2. 中科院研究员鲁华祥、阿里达摩院计算机视觉大模型负责人赵德丽等专家力荐。
3. 全面、深入介绍基于深度学习的图像识别技术与应用,深入介绍图像识别的核心算法与12个经典案例,重点突出计算机视觉领域的多项新技术研究成果。
4. 印刷精美:采用全彩印刷,能更好地呈现图像的色彩和各种细节。
5. 内容全面、新颖:涵盖深度学习与图像识别的核心技术与应用,并重点介绍多项新技术研究成果,给出多个重要领域的应用实践代码。
6. 讲解深入:在对内容横向扩展的同时,还进一步从纵向挖掘,力争把知识讲深、讲透。
7. 讲解准确、细致:对涉及的概念和算法等理论知识给出准确的描述,并通过大量的示意图、表和详细的步骤呈现技术细节。
8. 框架流行、易用:涉及的所有案例均采用流行和易用的PyTorch框架实现,容易上手。
9. 理论和实践紧密结合,案例典型:不仅对理论知识进行阐述,而且结合12个切合实际开发的典型案例进行实践,学习效果更好。
10. 编排科学:章节顺序编排合理,符合读者的学习和认知规律,学习梯度较为平滑。
全面总结作者多年数字图像处理算法的研究心得和实践经验。
带领读者系统掌握数字图像处理的相关理论知识和实际应用。
深入剖析张量运算方法在数字图像处理中的应用。
详解梯度下降算法的完整流程,并将其应用于模型优化中。
详解数据集的构建以及模型的训练和部署等核心知识。
详解图像分类、图像分割和目标检测三大核心任务。
提供教学视频、程序源代码和教学PPT等配套资源。
内容丰富:不但介绍PyTorch的基础知识和数字图像处理的相关理论,而且从张量的维度详解经典数字图像处理算法,并从深度学习的维度详解图像分类、图像分割和图像检测三大核心任务。
学习门槛低:从计算机视觉和数字图像的基本概念开始讲解,继而介绍开发环境的搭建、Python基础知识和PyTorch基础知识等,不需要读者有太多基础知识即可快速入门。
理论结合实践:不但对数字图像处理的主流算法理论进行系统讲解,而且在此基础上结合丰富的实战案例,用PyTorch深度学习框架进行应用实践。
图文并茂:结合多幅示意图讲解相关知识点,让抽象的知识变得更加直观和易于理解,从而帮助读者高效学习。
实用性强:结合大量真实的图像处理案例进行讲解,读者只需要对书中的案例源代码进行少量的改动,即可将其应用于自己的图像处理工作中。
配套资源丰富:提供高清教学视频、程序源代码和教学PPT等配套资源,便于读者高效、直观地学习,从而取得更好的学习效果。
(1)图书全彩印刷,代码以截图呈现,所见即所得;(2)对函数的数学原理进行解说,深入理解,高效应用;(3)从函数出发,讲解计算机视觉实际应用,紧贴工作需求。
《深度学习之图像识别:核心算法与实战案例(全彩版)》全面介绍了深度学习在图像识别领域中的核心算法与应用。该书不但重视基础理论的讲解,而且从第4章开始,每章都提供了1~3个不同难度的案例供读者实践,读者可以在已有代码的基础上进行改进,从而加深对所学知识的理解。
《深度学习之图像识别:核心算法与实战案例(全彩版)》共9章:首先介绍深度学习的基础概念,包括神经网络基础知识和深度学习中的优化技术;然后系统介绍深度学习中与数据相关的知识,包括经典数据集的设计、数据集的增强,以及数据的获取、整理与可视化;接着重点针对图像识别领域,结合实战案例系统地介绍深度学习在图像分类、图像分割和目标检测3个领域的核心技术与应用;另外,还会对深度学习模型的可视化以及模型的压缩和优化进行详细介绍,为读者设计和训练更加实用的模型提供指导;最后以微信小程序平台为依托,介绍微信小程序前后端开发技术,从而完成深度学习模型的部署。
《深度学习之图像识别:核心算法与实战案例(全彩版)》理论结合实践,广度兼具深度,非常适合深度学习领域的相关技术人员与爱好者阅读,尤其适合基于深度学习的计算机视觉从业人员阅读,可以帮助他们全方位了解深度学习在计算机视觉领域的技术全貌。另外,该书还适合作为高校人工智能相关专业的教材和社会培训机构相关课程的教材。
《计算机视觉之PyTorch数字图像处理》以数字图像处理为主题,在详细介绍数字图像处理主流算法的基础上,配合丰富的实战案例,用PyTorch深度学习框架对相关算法进行应用实践。本书一方面从张量的维度对经典数字图像处理算法进行详细的介绍,另一方面从深度学习的维度对图像分类、图像分割和图像检测进行细致的讲解,从而帮助读者较为系统地掌握数字图像处理的相关理论知识和实际应用。
《计算机视觉之PyTorch数字图像处理》分为3篇,共11章。第1篇图像处理基础知识,包括计算机视觉与数字图像概述、搭建开发环境和Python编程基础;第2篇基于经典方法的图像处理,包括图像处理基础知识、图像的基础特征、自动梯度与神经网络、数据准备与图像预处理;第3篇基于深度学习的图像处理,包括图像分类、图像分割、目标检测和模型部署。
《计算机视觉之PyTorch数字图像处理》内容丰富,讲解由浅入深、案例丰富、实用性强,特别适合数字图像处理的入门与进阶人员阅读,也适合数字图像处理的从业人员与研究人员阅读,还可作为高等院校数字图像处理相关课程的教材。
计算机视觉是在图像处理的基础上发展起来的新兴学科。OpenCV是一个开源的计算机视觉库,可以实现图像处理、模式识别、三维重建、物体跟踪等算法。本书基于Python,从图像基本原理说起,初步讲解计算机视觉所需的OpenCV知识。
本书可作为信息处理、计算机、机器人、人工智能、遥感图像处理、认知神经科学等相
关专业的教学用书,也可供相关领域的研究工作者参考
《深度学习之图像识别:核心算法与实战案例(全彩版)》全面介绍了深度学习在图像识别领域中的核心算法与应用。该书不但重视基础理论的讲解,而且从第4章开始,每章都提供了1~3个不同难度的案例供读者实践,读者可以在已有代码的基础上进行改进,从而加深对所学知识的理解。
《深度学习之图像识别:核心算法与实战案例(全彩版)》共9章:首先介绍深度学习的基础概念,包括神经网络基础知识和深度学习中的优化技术;然后系统介绍深度学习中与数据相关的知识,包括经典数据集的设计、数据集的增强,以及数据的获取、整理与可视化;接着重点针对图像识别领域,结合实战案例系统地介绍深度学习在图像分类、图像分割和目标检测3个领域的核心技术与应用;另外,还会对深度学习模型的可视化以及模型的压缩和优化进行详细介绍,为读者设计和训练更加实用的模型提供指导;最后以微信小程序平台为依托,介绍微信小程序前后端开发技术,从而完成深度学习模型的部署。
《深度学习之图像识别:核心算法与实战案例(全彩版)》理论结合实践,广度兼具深度,非常适合深度学习领域的相关技术人员与爱好者阅读,尤其适合基于深度学习的计算机视觉从业人员阅读,可以帮助他们全方位了解深度学习在计算机视觉领域的技术全貌。另外,该书还适合作为高校人工智能相关专业的教材和社会培训机构相关课程的教材。
《计算机视觉之PyTorch数字图像处理》以数字图像处理为主题,在详细介绍数字图像处理主流算法的基础上,配合丰富的实战案例,用PyTorch深度学习框架对相关算法进行应用实践。本书一方面从张量的维度对经典数字图像处理算法进行详细的介绍,另一方面从深度学习的维度对图像分类、图像分割和图像检测进行细致的讲解,从而帮助读者较为系统地掌握数字图像处理的相关理论知识和实际应用。
《计算机视觉之PyTorch数字图像处理》分为3篇,共11章。第1篇图像处理基础知识,包括计算机视觉与数字图像概述、搭建开发环境和Python编程基础;第2篇基于经典方法的图像处理,包括图像处理基础知识、图像的基础特征、自动梯度与神经网络、数据准备与图像预处理;第3篇基于深度学习的图像处理,包括图像分类、图像分割、目标检测和模型部署。
《计算机视觉之PyTorch数字图像处理》内容丰富,讲解由浅入深、案例丰富、实用性强,特别适合数字图像处理的入门与进阶人员阅读,也适合数字图像处理的从业人员与研究人员阅读,还可作为高等院校数字图像处理相关课程的教材。
计算机视觉是在图像处理的基础上发展起来的新兴学科。OpenCV是一个开源的计算机视觉库,可以实现图像处理、模式识别、三维重建、物体跟踪等算法。本书基于Python,从图像基本原理说起,初步讲解计算机视觉所需的OpenCV知识。
本书可作为信息处理、计算机、机器人、人工智能、遥感图像处理、认知神经科学等相
关专业的教学用书,也可供相关领域的研究工作者参考
机器学习、深度学习和人工智能是近几年持续热门的话题,尤其是OpenAI公司的ChatGPT聊天机器人一上线,便把人工智能推向了一个新的热度。深度学习其实并不是一门全新的学科,其历史可以追溯到20世纪40年代,其背后的核心技术包括神经网络的结构设计和优化方法等。深度学习是一门应用性极强的工程技术,初学者要想掌握好这门技术,不仅需要进行系统的理论知识学习,而且还要紧随理论进行全面实践。
对于我国而言,人工智能俨然已经成为国家高科技发展的重中之重,近几年有数百所高等院校陆续开设了人工智能类专业。当前,令人瞩目的是以深度学习为代表的无监督特征学习技术在图像识别、语音识别和自然语言处理等领域频频取得新的突破,这促使我国数以千计的人工智能类科技公司得到了快速发展。
笔者在8年前就投身人工智能领域,从事图像识别方面的工作。在此期间,笔者多以深度学习技术为基础进行相关项目的开发,积累了大量的经验,而且还持续运营微信公众号“有三AI”,推出了数百篇与人工智能相关的文章,帮助大量读者了解和学习人工智能相关技术及发展趋势。
笔者曾在2019年5月出版了《深度学习之图像识别:核心技术与案例实战》,迄今已经5次印刷,销量超过万册,被众多读者所认可。只是这是笔者第一次执笔写作,当时笔者还在互联网公司上班,时间非常紧,加之自身能力不足,所写内容还不算太成熟和完备,仍然有大量可以改进、扩展和深入的空间。近几年,笔者进一步对相关技术进行了潜心研究和实践,对基于深度学习的图像识别技术有了更加深入和全面的认识,技术能力突飞猛进,其间还写作并出版了几本人工智能技术图书,还与大量读者和技术爱好者进行过多次线上和线下交流,并在各大平台上进行过多场直播,收集了大量的反馈和建议,因此笔者觉得有必要重新写一本书,以便与各位读者和技术爱好者分享更新、更系统、更细致和更深入的计算机视觉技术。于是笔者于2022年开始动笔,经过大半年的编写,终于完成了本书的写作。
本书首先从深度学习的背景和基础理论知识讲起,然后介绍深度学习中数据的使用,以及计算机视觉涉及的三大核心领域—图像分类、图像分割和目标检测,最后介绍深度学习模型的可视化、优化和部署等知识。
本书内容全面,理论结合实践,讲解由浅入深,图文并茂,尽可能地抛开过多的数学理论,将重点放在基于深度学习的图像识别关键技术与应用上,从而降低学习难度。本书紧随工业界和学术界计算机视觉技术的新近发展,带领读者全面、系统地了解并掌握相关技术。相信通过阅读本书,读者能够对相关知识有更加全面和深入的理解。
本书特色
相比前书,本书基本沿袭了《深度学习之图像识别:核心技术与案例实战》的内容架构,但在具体内容和风格上有很大的变化,主要体现在以下几个方面:
印刷更精美—采用四色印刷,能更好地呈现图像的色彩和各种细节。
内容更全面、新颖—除了详细介绍神经网络和深度学习的理论知识、数据使用方法,以及深度学习在图像分类、图像分割和目标检测三大领域的关键技术与应用外,还会介绍模型的可视化、优化与部署等知识,并重点突出新近研究成果,给出多个重要领域的应用实践代码。
内容更深入—在对内容进行横向扩展的同时,还会进一步从纵向挖掘,力争把知识讲深、讲透。
讲解更准确、细致—对涉及的概念和算法等理论知识给出更加准确的描述,并通过大量的示意图、表格和详细的步骤呈现技术细节。
框架更流行、易用—涉及的所有案例均采用更加流行和易用的PyTorch框架实现,更容易上手。
理论和实践结合更紧密,案例更典型—不仅对理论知识进行阐述,而且结合多个更加切合实际开发的典型案例进行实践,学习效果更好。
编排更合理—章节安排更加合理,更加符合读者的学习和认知规律。
本书内容
第1章神经网络与卷积神经网络基础,首先介绍神经网络的生物基础与数学模型,然后介绍卷积神经网络的基础知识,为后续学习深度学习模型打好基础。
第2章深度学习优化基础,首先介绍激活函数、参数初始化、标准化、最优化、正则化等与深度学习优化相关的知识,然后介绍Caffe、TensorFlow和PyTorch等开源框架的优缺点,旨在让读者对深度卷积神经网络优化有较为全面的认识,为后续学习打好基础。
第3章深度学习中的数据使用方法,首先介绍深度学习发展中的几个数据集,尤其是几个较为重要的数据集,然后介绍数据的收集、整理与标注方法,以及数据增强和可视化等相关知识。本章内容对工业项目开发非常重要,实践性较强。
第4章图像分类,首先介绍图像分类的基础知识,如单标签图像分类和图像分类经典模型等,然后详细介绍图像分类的几个重点研究领域,如多类别图像分类、细粒度图像分类、多标签图像分类、半监督与无监督图像分类、零样本图像分类等,接着以从零开始搭建图像分类模型和准备数据集为例,展示实现一个完整的工业级图像分类任务的流程,最后介绍一个细粒度级别的图像分类任务,以一个较好的基准模型,展示较复杂的图像分类任务的特点以及模型训练与调优方法。
第5章目标检测,首先介绍目标检测的基础知识和基本流程,并讲述一个经典的V-J目标检测框架,然后介绍基于深度学习的目标检测任务的研究方法与发展现状,并重点总结二阶段目标检测方法与一阶段目标检测方法,最后给出一个目标检测任务进行实践,即使用当前较为主流的YOLO系列中的YOLO v3框架进行模型的训练与测试。
第6章图像分割,首先介绍图像分割的研究方向,并简单地回顾经典的图像分割方法与评估指标等,然后重点介绍基于深度学习的图像分割方法的基本原理与核心技术,并总结语义分割、Image Matting和实例分割的相关模型,接着以从零开始搭建图像分割模型和准备数据集为例,展示实现一个完整的工业级图像分割任务的流程,最后介绍一个更加复杂的人像软分割任务,展示典型的Image Matting框架的代码实现与模型训练方法。
第7章模型可视化,首先介绍深度学习中的模型可视化基础知识,然后介绍具有代表性的模型可视化分析方法,接着结合案例分别对梯度法可视化、反卷积可视化和激活热图可视化方法进行代码分析与实践。
第8章模型压缩,首先介绍轻量级模型设计的典型方法,然后详细介绍模型剪枝、模型量化和模型蒸馏的相关知识,最后结合案例介绍基于缩放因子的结构化模型剪枝、基于KL散度的8bit模型量化及经典的知识蒸馏框架的代码实现、模型训练和压缩方法。
第9章模型部署与上线,依托微信小程序平台从两个方面介绍模型部署的相关知识。首先介绍微信小程序的前端开发,然后介绍微信小程序的服务端开发,以及服务端算法功能代码的实现方法,从而完成一个可供验证的工业级线上模型的部署。
配书资源获取方式
本书涉及的源代码文件和数据集需要读者自行下载。读者可在清华大学出版社网站(www.tup.com.cn)搜索到本书,然后找到页面上的“资源下载”模块,单击“网络资源”按钮进行下载即可。另外,读者也可在“有三AI”社区的开源GitHub上进行下载,网址为https://github.com/longpeng2008/yousan.ai,或者关注微信公众号“方大卓越”,回复“图像识别yys”,即可获取下载链接。
读者对象
深度学习技术爱好者与研究者;
基于深度学习的图像识别人员;
计算机视觉技术爱好者与从业人员;
高等院校相关专业的学生与老师;
相关培训机构的学生与老师。
售后支持
限于笔者水平,书中可能还存在一些疏漏和不足之处,敬请各位读者批评与指正。阅读本书时如果有疑问,可以通过电子邮件([email protected])获取帮助。
致谢
感谢南京邮电大学的博士生尤帅!在本书的编写过程中,他协助笔者绘制了一些图表,并审阅和校正了部分内容。
感谢广大读者和技术爱好者!他们给笔者提供了已出版图书的阅读反馈和建议,这对笔者写作本书非常有价值。
最后感谢参与本书出版的各位编辑!没有他们的辛苦与努力,就不会有本书的高质量出版。
言有三
数字图像处理是计算机视觉领域的主要应用场景之一。近年来随着人工智能技术的进一步发展,数字图像处理技术得到了快速发展。特别是以深度学习为主的图像处理已经达到或接近人类视觉的识别水平,解决了长期以来图像处理的各种难题。
PyTorch是一款流行的深度学习框架,它以Python作为编程语言,以张量运算为中心集成了深度学习的各种算子,能够方便、快捷地构造复杂的深度学习模型,已经成为数字图像处理的重要工具之一。PyTorch框架的优点众多,即可以将其作为高效的张量计算模块,轻松地实现经典的数字图像处理算法,并最大限度地利用CUDA等硬件资源加速模型的训练和部署,又可以利用其自动梯度和动态图机制构造复杂的深度学习模型,从而解决高级图像处理的各种问题。当前,PyTorch在学术界和工业界得到了广泛的使用,已经成为学习数字图像处理的必学工具。熟练使用PyTorch进行数字图像处理已经成为图像处理和计算机视觉等相关岗位的必要条件。
目前,虽然图书市场上已有多本计算机视觉方面的图书,其中不乏传统数字图像处理方法的图书,但是尚缺少系统介绍PyTorch数字图像处理的图书。于是笔者编写了本书,希望能对想系统学习PyTorch数字图像处理技术的相关人员有所帮助。
本书特色
* 内容丰富:不但介绍PyTorch的基础知识和数字图像处理的相关理论,而且从张量的维度详解经典数字图像处理算法,并从深度学习的维度详解图像分类、图像分割和图像检测三大核心任务。
* 学习门槛低:从计算机视觉和数字图像的基本概念开始讲解,继而介绍开发环境的搭建、Python基础知识和PyTorch基础知识等,不需要读者有太多基础知识即可快速入门。
* 理论结合实践:不但对数字图像处理的主流算法理论进行系统讲解,而且在此基础上结合丰富的实战案例,用PyTorch深度学习框架进行应用实践。
* 图文并茂:结合多幅示意图讲解相关知识点,让抽象的知识变得更加直观和易于理解,从而帮助读者高效学习。
* 实用性强:结合大量真实的图像处理案例进行讲解,读者只需要对书中的案例源代码进行少量的改动,即可将其应用于自己的图像处理工作中。
* 配套资源丰富:提供高清教学视频、程序源代码和教学PPT等配套资源,便于读者高效、直观地学习,从而取得更好的学习效果。
本书内容
第1篇 图像处理基础知识
第1章计算机视觉与数字图像概述,主要介绍计算机视觉与数字图像的概念,以及数字图像的存储和处理,并简单介绍PyTorch框架在图像处理中的应用。
第2章搭建开发环境,首先简单介绍Python和CUDA的相关知识,然后详细介绍Python第三方库、PyTorch框架、可视化工具Visdom和集成开发环境Spyder的安装方法。
第3章Python编程基础,主要介绍Python语法基础知识、PyTorch张量运算基础知识和Visdom图表绘制基础知识。
第2篇 基于经典方法的图像处理
第4章图像处理基础知识,主要介绍图像与张量的互操作、图像的点运算、图像的邻域运算和图像的全局运算等相关知识。
第5章图像的基础特征,主要介绍图像的特征点、线特征和面特征等相关知识。
第6章自动梯度与神经网络,主要介绍自动梯度、模块、激活函数、损失函数、优化器和全连接神经网络等相关知识。
第7章数据准备与图像预处理,首先对Torchvision库进行简单介绍,然后对构建数据集、数据变换与增强进行详细的介绍。
第3篇 基于深度学习的图像处理
第8章图像分类,首先介绍图像分类的任务与预训练模型的使用,然后介绍VGGNet和ResNet两个经典的卷积神经网络模型,接着介绍卷积神经网络的训练与评估,最后简单介绍迁移学习的相关知识。
第9章图像分割,首先简单介绍图像分割的概念和卷积神经网络在该领域的进展情况,然后详细介绍分割数据集、FCN分割模型、UNet分割模型、分割网络的训练与评估等相关知识,最后进行分割网络实践。
第10章目标检测,首先简单介绍目标检测的概念和卷积神经网络在该领域的进展情况,然后详细介绍预训练网络的使用、FCOS模型及其训练、YOLOv5模型及其训练等相关知识。
第11章模型部署,首先简单介绍模型部署的特点,然后详细介绍如何使用LibTorch、ONNX、OpenCV和OpenVINO部署模型等相关知识。
读者对象
* 数字图像处理入门人员;
* 数字图像处理从业人员;
* 数字图像处理研究人员;
* 数字图像处理技术爱好者;
* 计算机视觉研究人员和爱好者;
* 高等院校相关专业的学生和老师;
* 社会培训机构的学员。
配套资源获取
本书提供的教学视频、程序源代码和教学PPT等配套资源有两种获取方式:一是关注本书微信公众号(见图书),回复数字“28”获取下载链接;二是在清华大学出版社网站上搜索到本书,然后在本书页面上找到“资源下载”栏目,单击“网络资源”或“课件下载”按钮进行下载。
售后支持
由于笔者水平所限,书中可能还存在疏漏与不足之处,恳请广大读者批评与指正。读者在阅读本书的过程中若有疑问,可发电子邮件获得帮助。
侯伟
2024年7月
前言
人工智能的兴起,除了机器学习与深度学习带领风潮,计算机视觉也是众多工程师钻研的主题。多次与教育界的朋友聊天,一致感觉目前国内缺乏这方面的书籍,这也是笔者撰写本书的动力。
其实要对一幅图像做分析,让计算机认知图像本质,牵涉许多复杂的数学运算,所幸 OpenCV 已经将这些复杂的数学运算封装成一个个的函数,让整个学习变得简单许多。然而学习 一个知识如果只是会调用函数,不了解函数内部数学原理,所设计的程序也只是空洞而没有灵魂 的代码,为此笔者在撰写本书时除了采用当下热门的 Python 语言,还采用两步说明 :
(1)函数数学原理解说。
(2)套用函数讲解图像创意与计算机视觉的实例。 在撰写本书时,笔者先从图像原理说起,逐一解说从图像到计算机视觉所需的完整知识。本
书的主要内容如下 :
完整解说操作 OpenCV 需要的 Numpy 知识 ;
图像读取、显示与存储 ;
认识 BGR、RGB、HSV 色彩空间 ;
建立静态与动态图像,打破 OpenCV 限制建立中文输出函数 ;
图像计算与图像的位运算 ;
重复曝光技术 ;
图像加密与解密 ;
阈值处理 ;
隐藏在图像中的情报 ;
数字水印 ;
图像几何变换 :翻转、仿射、透视、重映射 ;
图像滤波器 ;
认识卷积 ;
认识与删除图像噪声 ;
数学形态学 :腐蚀、膨胀、开运算、闭运算、礼帽运算、黑帽运算 ;
从图像梯度到内部图形的边缘检测 ;
图像金字塔 ;
图像轮廓特征与匹配 ;
轮廓的拟合、凸包与几何测试 ;
霍夫变换与直线检测 ;
无人驾驶车道检测技术 ;
直方图、增强图像对比度、修复太亮或太黑图像、去雾处理 ;
模板匹配 ;
傅里叶变换的方法与意义、空间域与频率域的切换 ;
分水岭算法执行图像分割 ;
图像撷取 ;
图像修复 :抢救《蒙娜丽莎的微笑》;
识别手写数字 ;
OpenCV 的摄像功能、活用拍照与录像 ;
应用 OpenCV 内建的哈尔特征分类器 ;
检测人脸、身体、眼睛、猫脸、车牌 ;
人脸识别原理与应用 ;
建立哈尔特征分类器执行车牌识别。
笔者写过许多计算机图书,本书沿袭笔者著作的特色,程序实例丰富。相信读者只要遵循本书内容进行学习,必定可以快速精通 OpenCV,设计计算机视觉的应用程序。本书虽力求完美,但谬误难免,尚祈读者不吝指正。
读者可扫描下方二维码,获取相应学习资源。
洪锦魁
评论
还没有评论。