fbpx

[email protected]

购物车

 查看订单

  • 我的帐户
东东购 | EasternEast
  • 中文书店
    • 畅销排行榜
      • 小说 畅销榜
      • 童书 畅销榜
      • 外语畅销榜
      • 管理畅销榜
      • 法律畅销榜
      • 青春文学畅销榜
    • 热门分类
      • 社会小说
      • 成功/励志 畅销榜
      • 人物传记
      • 大陆原创
      • 绘本童书
      • 影视小说
    • 文学推荐
      • 文集
      • 戏剧
      • 纪实文学
      • 名家作品
      • 民间文学
      • 中国现当代随笔
    • 新书热卖榜
      • 小说 新书热卖榜
      • 青春文学 新书热卖榜
      • 童书 新书热卖榜
      • 管理 新书热卖榜
      • 成功/励志 新书热卖榜
      • 艺术 新书热卖榜
  • 精选分类
    • 小说
    • 保健养生
    • 烹饪/美食
    • 风水/占卜
    • 青春文学
    • 童书
    • 管理
    • 成功/励志
    • 文学
    • 哲学/宗教
    • 传记
    • 投资理财
    • 亲子家教
    • 动漫/幽默
    • 法律 Legal
    • 经济 Economics
    • 所有分类
  • 关于东东
  • 帮我找书
搜索
首页计算机/网络操作系统/系统开发Plasmon and Plasmon Exciton Hybrids for Surface Catalytic Reactions(表面等离激元及其与激子杂化在表面催化反应中的应用)

Plasmon and Plasmon Exciton Hybrids for Surface Catalytic Reactions(表面等离激元及其与激子杂化在表面催化反应中的应用)

作者:本社 出版社:清华大学出版社 出版时间:2019年06月 

ISBN: 9787302518570
年中特卖用“SALE15”折扣卷全场书籍85折!可与三本88折,六本78折的优惠叠加计算!全球包邮!
trust badge

EUR €56.99

类别: 操作系统/系统开发 SKU:5d81700eb5d8bfc22f310ea8 库存: 有现货
  • 描述
  • 评论( 0 )

描述

开 本: 16开纸 张: 胶版纸包 装: 平装-胶订是否套装: 否国际标准书号ISBN: 9787302518570

编辑推荐
本书在介绍经典的理论解释和应用时加入大量科研*前沿的进展,保证读者在能理解基础概念的同时,对本领域的发展进展和热点有一定了解。 
内容简介

本书是基于作者多年在表面等离激元催化领域的科研成果,结合本领域的前沿科技进展,详述了表面等离激元-激子杂化在表面等离激元杂化领域的科研进展,详细全面地系统介绍。

作者简介
主要从事基于表面等离激元增强的分子拉曼光谱的实验和理论研究。实现高真空针尖增强拉曼光谱仪,实现目标分子拉曼光谱的超灵敏检测,并揭示表面等离激元增强拉曼光谱的物理和化学机制。以通讯作者(或第一作者)在国际重要学术期刊上发表SCI 论文超过180 篇(其中ESI 高引论文8篇)。所有论文引用约5500多次,H-index 40。Researcher ID: B-1131-2008。10次应邀在国际重要期刊撰写本领域的综述。应邀撰写英文专著(科学出版社)2 本(第一作者)。2016 年,获辽宁省科学技术(自然科学)二等奖(个人第二)。2015 年,获辽宁省科学技术(自然科学)三等奖(个人第五)。
目  录

CHAPTER 1Introduction 

CHAPTER  2SPDriven Oxidation Catalytic Reactions

2.1SPDriven Oxidation Catalytic Reactions by SERS in 

Atmosphere Environment

2.1.1Genuine SERS Spectrum of PATP

2.1.2SPDriven Oxidation Catalytic Reactions of PATP

2.1.3SPDriven Oxidation Catalytic Reactions on Metal/

Semiconductor Hybrids

2.2SPDriven Oxidation Catalytic Reactions by SERS in 

Aqueous Environment

2.3SPDriven Oxidation Catalytic Reactions by TERS in 

Ambient Environment

2.4SPDriven Oxidation Catalytic Reactions by TERS in 

HV Environment

CHAPTER  3SPDriven Reduction Catalytic Reactions

3.1SPDriven Reduction Catalytic Reactions in Atmosphere 

Environment

3.1.1SPDriven Reduction Catalytic Reactions by SERS in 

Atmosphere Environment

3.1.2SPDriven Reduction Catalytic Reactions on Metal/

Semiconductor Hybrids

3.2SPDriven Reduction Catalytic Reactions by SERS in 

Aqueous Environment

3.2.1Setup of Electrochemical SERS

3.2.2PotentialDependent Plasmon Driven Sequential 

Chemical Reactions

3.2.3pHDependent Plasmon Driven Sequential Chemical 

Reactions

3.2.4Electrooptical Tuning of Plasmon Driven Double 

Reduction Interface Catalysis

3.3The Stability of Plasmon Driven Reduction Catalytic Reactions 

in Aqueous and Atmosphere Environment

3.4SPDriven Reduction Catalytic Reactions by TERS

3.4.1SPDriven Reduction Catalytic Reactions by TERS in 

Ambient Environment

3.4.2SPDriven Reduction Catalytic Reactions by TERS in 

HV Environment

3.4.3Plasmon Hot Electrons or Thermal Effect on SPDriven 

Reduction Catalytic Reactions in HV Environment

CHAPTER  4Photo or Plasmon Induced Oxidized and Reduced 

Reactions

CHAPTER  5The Priority of Plasmon Driven Reduction or 

Oxidation Reactions

5.1Plasmon Driven DiazoCoupling Reactions in Atmosphere 

Environment

5.1.1Characterization of SERS and GrapheneMediated 

SERS Substrate

5.1.2Selective Reduction Reactions of PNA on the Ag NPs 

in Atmosphere Environment

5.1.3Selective Reduction Reactions of PNA on the Surface 

of GAg NPs Hybrids in Atmosphere Environment

5.1.4Hot ElectronInduced Reduction Reactions of PNA 

on GAg NWs Hybrids in Atmosphere Environment

5.2The Priority of Plasmon Driven Reduction or Oxidation in 

Aqueous Environment

5.3The Priority of Plasmon Driven Reduction or Oxidation in 

HV Environment

CHAPTER  6Plasmon Exciton Coupling Interaction for Surface 

Catalytic Reactions

61Plasmon Exciton Coupling Interaction for Surface Oxidation 

Catalytic Reactions

6.1.1Characterization of Ag NPsTiO2 Film Hybrids

6.1.2Ag NPsTiO2 Film Hybrids for Plasmon Exciton 

Codriven Surface Oxidation Catalytic Reactions

6.1.3Plasmon Exciton Coupling of Ag NPsTiO2 Film 

Hybrids Studied by SERS Spectroscopy

6.1.4Plasmon Exciton Coupling of Ag NPsTiO2 Film 

Hybrids for Surface Oxidation Catalytic Reactions 

under Various Environments

6.2Plasmon Exciton Coupling Interaction for Surface Reduction 

Catalytic Reactions

6.2.1Plasmon Exciton Coupling of Monolayer MoS2Ag NPs 

Hybrids for Surface Reduction Catalytic Reactions

6.2.2Ultrafast Dynamics of Plasmon Exciton Coupling 

Interaction of GAg NWs Hybrids for Surface 

Reduction Catalytic Reactions

6.2.3Surface Reduction Catalytic Reactions on GSERS in 

Electrochemical Environment

6.3Unified Treatment for Plasmon Exciton Codriven Reduction 

and Oxidation Reactions

CHAPTER  7Plasmon Exciton Coupling Interaction by Femtosecond 

PumpProbe Transient Absorption Spectroscopy

7.1FemtosecondResolved Plasmon Exciton Coupling 

Interaction of GAg NWs Hybrids

7.1.1FemtosecondResolved Plasmonic Dynamics of 

Ag NWs

7.1.2FemtosecondResolved Plasmonic Dynamics of 

Single Layer Graphene

7.1.3FemtosecondResolved Plasmonic Dynamics of 

Plasmon Exciton Coupling Interaction of GAg 

NWs Hybrids

7.2Physical Mechanism on Plasmon Exciton Coupling Interaction 

Revealed by Femtosecond PumpProbe Transient Absorption 

Spectroscopy

CHAPTER  8Electrically Enhanced Plasmon Exciton Coupling 

Interaction for Surface Catalytic Reactions

8.1Electrooptical Synergy on Plasmon ExcitonCodriven Surface 

Reduction Catalytic Reactions

8.1.1Plasmon Exciton Coupling Interaction of Monolayer 

GAg NPs

8.1.2Electrical Properties of Plasmon Exciton 

Coupling Device

8.1.3Plasmon ExcitonCodriven Surface Reduction 

Catalytic Reactions

8.1.4BiasVoltageDependent Plasmon Exciton Codriven 

Surface Reduction Catalytic Reactions

8.1.5GateVoltageDependent Plasmon Exciton Codriven 

Surface Reduction Catalytic Reactions

8.2Electrically Enhanced Hot Hole Driven Surface Oxidation 

Catalytic Reactions 

CHAPTER  9Plasmon Waveguide Driven Chemical Reactions

9.1Plasmon Waveguide for Remote Excitation

9.1.1Features of Remote Excitation SERS and Early 

Application

9.1.2Remote Excitation Plasmon Driven Chemical 

Reactions

9.2Remote Excitation PolarizationDependent Surface 

Photochemical Reactions by Plasmon Waveguide

9.3RemoteExcitation TimeDependent Surface Catalytic 

Reactions by Plasmon Waveguide

CHAPTER  10Plasmon Driven Dissociation

10.1Resonant Dissociation of Surface Adsorbed Molecules by 

Plasmonic Nanoscissors

10.2Plasmonic Nanoscissors for Molecular Design

10.3Plasmon Driven Dissociation of H2

10.3.1Plasmon Driven Dissociation of H2 on Au

10.3.2Plasmon Driven Dissociation of H2 on Aluminum 

Nanocrystal

10.4Plasmon Driven Dissociation of N2 

10.5Plasmon Driven Water Splitting

10.5.1Plasmon Driven Water Splitting under Visible 

Illumination

10.5.2An autonomous photosynthetic device of 

Plasmon Driven Water Splitting 

10.6Plasmon Driven Dissociation of CO2

10.7RealSpace and RealTime Observation of a Plasmon

Induced Chemical Reactions of a Single Molecule

10.8Competition between Reactions and Degradation Pathways 

in Plasmon Driven Photochemistry

CHAPTER  11Summary and Outlook

Acknowledgements

References

免费在线读
CHAPTER 1
Introduction

When light shone a precious metal surface,the SP was a collective oscillation about free electrons present at the interface between the metal and the dielectric.There are two types of SP: the local SP and the propagating SP.According to local SP resonance,the tipenhanced Raman scattering(TERS)and the surfaceenhanced Raman scattering(SERS)spectra had been extensively used in the field of nanoscale ultrasensitive Raman analysis.Surface catalysis accelerated the rate of the chemical reactions as a result of the less active energy required to add the catalyst.Therefore,we need to find more efficient and stable catalysts to accelerate the chemical reactions rate,which is a huge challenge we are facing now.In order to enhance the efficiency and probability about plasmon exciton codriven chemical reactions,we could consider the application of electrooptical synergy.

In our previously studies,the plasmonic waveguide had been used in the field of the remotely excited SERS spectroscopy successfully.Remotely excited SERS had many special advantages over the traditional SERS.In normal SERS,when the excited light was concentrated on the detected spot,called local SERS,and in the remote SERS,the excitation point was far from the observed target,and the SP polaritons(SPPs)with the remote mode excited the target.Because the gold and silver waveguides transmit optical signals through the SPPs,they provided a method to go below size limit.The SPPs could propagate down the metal waveguide and transmit free photons at the end of the waveguides or at the imperfections,some of which were lost owing to the ohmic damping.

In this book,to begin with,plasmon catalysis for the activation energy offered by plasmonicsinduced hot electrons had been exposed in a large number of chemical reactions,such as in atmospheric,liquid and HV conditions and so on.In addition,we used the femtosecond pumpprobe transient absorption spectroscopy to learn the physical principles of the plasmon exciton coupling interaction about the surface catalytic reactions.Then,we reported the electrically enhanced about the surface oxidation or reduction catalytic reactions at the plasmon exciton hybrid interface.Next,we presented the latest research progress report about the surface catalytic reactions driven by propagating SPPs(plasmon waveguides).Furthermore,we could know that p,p′dimercaptoazobenzene(DMAB)could be produced from the paminothiophenol(PATP)by propagating SPPs(PSPPs),which was a plasmon driven oxidation reactions,while DMAB was generated from the 4nitrobenzenethiol(4NBT)by transporting SPPs,which was a reduction reactions driven by a plasmon waveguide.Last but not least,we researched the molecular resonance dissociation about the surfaceadsorbed molecule by plasmon nanoscissors.

All the color figures please scan the QR code.

CHAPTER 2
SPDriven Oxidation Catalytic Reactions

21SPDriven Oxidation Catalytic Reactions by SERS in Atmosphere Environment

211Genuine SERS Spectrum of PATP

In previously studies, the authors researched the genuine SERS spectra of PATP by selecting the appropriate SERS substrate and by a lower concentration of PATP solution, however, the authors did not observe the vibrational mode of the DMAB at 1140 cm-1, 1390 cm-1, and 1432 cm-1, and the SERS spectrum was equal to the Raman spectrum of the PATP powder. This experiment used a HeNe laser as the excitation source with 6328 nm. In the Raman experiment, the laser power was limited to 001 mW and a 100×objective used on the SERS sample. The data acquisition time was 10 seconds. Here the authors detected the NRSS about the PATP as a control experiment.

Figure 1(a) displayed the normal Raman scattering (NRS) spectroscopy of PATP powder, and Fig1(b) showed the SERS spectrum[1]. The authors could find that the former and the latter had the same spectrum. However, the authors did not observe DMAB vibration mode at 1140 cm-1, 1390 cm-1, and 1432 cm-1, respectively. This demonstrated that the SERS spectrum was derived from a PATP monomer rather than a DMAB dimer consisting of two PATP molecules. The Fig1(c) displayed the simulated

Fig1(a) NRS spectrum of PATP powder; (b) SERS spectrum of PATP; (c) The simulated Raman spectrum of PATP adsorbed on Ag5 cluster[1]

Raman spectrum about the PATP adsorbed on the Ag5 cluster, and the experimental results in Fig1(b) were proved. Six vibration modes were shown in Fig2. Figures 3(a) and (b) revealed the SERS spectrum of the

Fig2Vibrational modes of PATP adsorbed on Ag5 cluster in Fig1(c)[1]

(For colored figure please scan the QR code on page 2)

PATP at the beginning and after 60 seconds, respectively, when the laser was continuously illuminated on the sample. Using the spectrum in Fig3(a) as a control, three strong Raman signals about DMAB at 1140 cm-1, 1390 cm-1, and 1432 cm-1 could be observed clearly in the Fig3(b). In addition, the vibration of the Raman signal of the PATP at 1610 cm-1 could be observed in Fig3(a) but not observed in Fig3(b). This demonstrated that PATP underwent a dimerization reaction to convert to DMAB by increasing the irradiation time. As was demonstrated in the Fig3(c), a characteristic SERS spectrum about the
PATP in a silver aggregation system, where the experimental conditions were the same as described above. The authors could see that Fig3(c) displayed three stronger Raman signals about the DMAB at 1140 cm-1, 1390 cm-1, and 1432 cm-1, with a radiation time of only 10 seconds[2,3]. Since, in such a system, it was impossible to find the genuine SERS spectrum about the PATP practically. Therefore, the authors made the chemical reactions rate of dimerization faster by increasing plasmon enhancement. And the mode assignments about the DMAB was displayed in Fig3(c)[2].

Fig3(a),(b) SERS spectra of PATP measured at the very beginning and after 60 s of laser radiating in Ag nanowires (NWs)on Ag film system,respectively; (c) The SERS spectrum of DMAB in Ag aggregation system[1]

In summary, the authors had clearly observed the genuine SERS spectrum about the PATP, but at 1140 cm-1, 1390 cm-1, and 1432 cm-1 no vibrational modes about the DMAB was observed, and the SERS spectrum was equal to the Raman spectrum about the PATP powder. Among them, the authors could find that the key factors affecting the surface catalytic reactions were plasmon enhancement and laser irradiation time. Therefore, the authors could predict that changing the concentration of the solution in the molecule, changing the laser power, or selecting a diverse SERS system could control the degree and time of the reactions.

212SPDriven Oxidation Catalytic Reactions of PATP

Combine previous experimental and theoretical findings, the SERS evidence for the generation about DMAB from PATP was obtained on the Ag nanoparticles (NPs) by selective catalytic coupling[2]. The calculated SERS spectra of DMAB were consistent with the timedependent SERS spectrum about the PATP, which directly demonstrated that PATP could produce DMAB through selecting catalytic coupling reactions on Ag NPs. As a control experiment for comparison, the authors measured the NRS spectrum about the PATP powder as displayed in the Fig4(a). Studies had shown that the vibration mode at 10845 cm-1 was vcc vcs, and the vibration mode at 15895 cm-1 was vcc by calculating the NRS spectrum about the PATP. As was demonstrated in the Fig4(b), the authors calculated the SERS spectra about the PATPAg5 complexes for better comparison with experimental SERS measurements about the PATP adsorbed on an Ag sol. Comparing Figs4(a) and (b), the authors observed that the profiles about the Raman peaks were similar, with Fig4(b) showing that the vibration mode at 1616 cm-1 wasNH2 scissor vibration[2].

As was demonstrated in the Figs4(c) and (d), the authors detected the SERS spectrum about PATP solution in aqueous Ag solution when the concentration about the PATP solution was 5×10-6mol/L. From the above, it could be observed that the curves of the Raman peaks about the Figs4(c) and (d) were similar, but the outline of the Raman peak about the Fig4(b) was significantly different at 1100 cm-1 to 1500 cm-1. As was demonstrated in the Figs4(c) and (d), three stronger Raman signals appeared at 1143 cm-1, 1390 cm-1, and 1432 cm-1, respectively. In previous experimental studies, the three strong signals in Figs4(c) and (d) were defined as the irreducible representation of b2 symmetry in the benzenetype structure of PATP adsorbed on the Ag electrode. In addition, Fujishima and colleagues speculated that the appearance of the Raman peak might be due to certain surface azobenzene species, however they did not conduct further research[4].

Fig4(a) The experimental NRS spectrum of PATP; (b) Theoretical SERS spectrum of PATPAg5 complex; (c) Experimental SERS spectrum of DMAB excited at 6328 nm; (d) Experimental SERS spectrum of DMAB excited at 5145 nm; (e) The calculated SERS spectrum of Ag5DMABAg5 junction; (f) Comparisons between theoretical and experimental spectra; (g) The calculated Raman spectrum of isolated DMAB, and (h) the SERS spectrum excited at 1064 nm[2]

(For colored figure please scan the QR code on page 2)

Fig4(Continued)

Figure 4(e) revealed that the authors used a model about Ag5DMABAg5 junction to simulate the SERS spectrum about DMAB at a zerofrequency laser in order to interpret the SERS spectrum correctly. Combined theoretical and experimental studies had shown that as displayed in the Fig4(f), one could observe that the curves of these Raman spectra were similar. This strongly demonstrated that DMAB could be generated from PATP by selective catalytic coupling on the Ag NPs[5].

As was demonstrated in the Fig5(a), the timedependent SERS spectra about the DMAB when the molecular concentration was 5×10-6 mol/L. From the above Fig5(a), the authors could see that the SERS intensity slowly increased from 0 to 27 minutes and reached a maximum at 27 minutes. Then, as time increased, the SERS intensity decreased gradually, and after 50 minutes, it tended to be stable. Figure 5(b) displayed the rate of increase in SERS intensity for the relative vibration mode of —NN— at 1390 cm-1 and 1432 cm-1 from 0 to 27 minutes, in particular, the C—N vibration mode was much larger than other modes at 1143 cm-1. This further demonstrated the above experimental results, which were the results of DMAB production from PATP by selective catalytic coupling reactions on Ag NPs. In order to better understand this dynamic

Fig5(a) The timedependent SERS of DMAB at molecular concentration of 5×10-6mol/L; (b) The timedependent SERS intensities of DMAB for five vibrational modes with different acquired sequence (different time) at molecular concentration of 5×10-6mol/L; (c) When the concentration was 5×10-4mol/L, the time dependent SERS intensities of DMAB for five vibrational modes[2]

(For colored figure please scan the QR code on page 2)

process of SERS, there were three processes to explain. To begin with, the PATP molecules were adsorbed on the Ag NPs by a thio group. In addition, the formation of DMAB. Last but not least, aggregation about the Ag NPs linked by the DMAB molecule.

For reference, the authors also considered the normal mode of molecular concentration dependent in the SERS reactions of DMAB. A large amount of experimental data indicated that a high PATP concentration made the Raman signal stronger. Therefore, the authors estimated that the optimal ratio about the Ag NPs to PATP molecules was approximately 7∶106.

Figure 6 displayed that the author observed the SERS spectrum about the DMAB at 6328 nm after three days in order to understand the stability of SERS spectrum about the molecular concentrationdependent of DMAB. It could be seen from the above Fig6 that the molecular concentration corresponding to the optimal SERS spectrum of DMAB was at 5×10-6mol/L, simultaneously, the —NN— relative vibration mode could be distinctly observed at 1390 cm-1 and 1432 cm-1, respectively.

Fig6The SERS of DMAB measured 3 day later at different concentrations of PATP in the incident light of 6328 nm[2]

(For colored figure please scan the QR code on page 2)

The SERS spectrum in the Fig4(h) displayed that DMAB was produced by the presence of three Raman signals at 1164 cm-1, 1392 cm-1, and 1440 cm-1 from PATP excited at 1064 nm on the silver substrate. In addition, the signal to noise ratio was very small because the electromagnetic (EM) field

抢先评论了 “Plasmon and Plasmon Exciton Hybrids for Surface Catalytic Reactions(表面等离激元及其与激子杂化在表面催化反应中的应用)” 取消回复

评论

还没有评论。

相关产品

阅读更多
缺货

Windows Server 2016系统配置指南

EUR €68.99
阅读更多
缺货

Linux内核设计与实现(原书第3版)

EUR €43.99
加入购物车

办公软件应用(Windows平台)Windows 7,Office 2010试题解答(操作员级)(1CD)

EUR €19.99
加入购物车

鸟哥的Linux私房菜 基础学习篇 第四版

EUR €68.99
评分 5.00 / 5

东东购的宗旨是服务喜爱阅读中文书籍的海外人民,提供一个完善的购书平台,让国人不论何时何地都能沉浸在书香之中,读着熟悉的中文字,回忆着家乡的味道。


安全加密结账 安心网络购物 支持Paypal付款

常见问题

  • 货物配送
  • 退换货政策
  • 隐私政策
  • 联盟营销

客户服务

  • 联系东东
  • 关于东东
  • 帮我找书
  • 货物追踪
  • 会员登入

订阅最新的优惠讯息和书籍资讯

选择币别

EUR
USD
CAD
AUD
NZD
NOK
GBP
CHF
SEK
CNY
UAH
ILS
SAR
MXN
KRW
MYR
SGD
HUF
TRY
JPY
HKD
TWD
facebookinstagram
©2020 东东购 EasternEast.com

限时特卖:用“SALE15”优惠券全场书籍85折!可与三本88折,六本78折的优惠叠加计算。 忽略