描述
包 装: 平装国际标准书号ISBN: 9787030596260
编辑推荐
无
内容简介
无
目 录
Contents
Chapter 1 Introduction 1
1.1 Application Scenarios of Positioning and Navigation 1
1.2 Brief History of Indoor Positioning and Navigation 3
1.3 Overview of the Book 7
References 8
Chapter 2 Major Signal Parameters 10
2.1 Introduction 10
2.2 Received Signal Strength 11
2.3 Time of Arrival 12
2.3.1 Effect of Bandlimiting 13
2.3.2 Multipath Effect 13
2.3.3 Special Acoustic Signal 15
2.4 Angle of Arrival 16
2.4.1 Signal Processing for AOA Estimation 16
2.4.2 Beamforming for Signal Processing 16
2.4.3 TDOA for AOA Estimation 18
2.5 Range 18
2.5.1 Round-Trip Time-Based Ranging 18
2.5.2 TDOA-Based Ranging 20
2.5.3 RSS-Based Ranging 20
2.5.4 Pseudorange 21
2.6 INS Parameters 22
2.6.1 Acceleration 22
2.6.2 Turning Rate 23
2.7 Carrier Phase 24
2.8 Frequency Offset 24
2.9 Internal Radio Delay 25
2.10 Signal-to-Noise Ratio 26
References 27
Chapter 3 MEMS Sensor and Pedestrian Dead Reckoning 29
3.1 MEMS Technology 29
3.1.1 Introduction to MEMS 29
3.1.2 History of MEMS Technology 29
3.1.3 Application of MEMS Technology 31
3.2 MEMS Accelerometer and Gyroscope 37
3.2.1 MEMS Micro Accelerometer 37
3.2.2 MEMS Gyroscope 41
3.3 Pedestrian Dead Reckoning 44
3.3.1 Basic Principles 45
3.3.2 Example 49
References 51
Chapter 4 RFID Indoor Localization Techniques 53
4.1 Introduction 53
4.2 Localization Based on Improved Ranging Method 54
4.2.1 Ranging Algorithm Based on Similarity Analysis 54
4.2.2 Experimental Results 56
4.3 Localization based on Residual Weighted Multi-Dimensional Scaling 57
4.3.1 Weighted Multi-Dimensional Scaling Algorithm 58
4.3.2 Simulation and Discussion 60
4.4 Localization based on Convex Optimization 60
4.5 Localization based on Improved Fingerprinting 62
4.5.1 Basic Principle and Structure 63
4.5.2 Localization Scene 63
4.5.3 Dimensionality Reduction based on PCA 64
4.5.4 Clustering Based on K-Means 65
4.5.5 Simulation Result and Discussion 66
4.6 Localization based on Crowdsourcing 69
4.6.1 Fingerprint Database Construction Algorithm 70
4.6.2 Clustering Based on LVQ 70
4.6.3 Dimension Reduction based on MDS 71
4.6.4 Simulation Results 72
References 74
Chapter 5 Precise Positioning Using Terrestrial Ranging Technology 77
5.1 Introduction 77
5.1.1 Overview of the Terrestrial Ranging Technology 77
5.1.2 Measurements and Measurement Equations 79
5.2 Terrestrial-Based On-The-Fly Positioning Method 81
5.2.1 Dynamic Model 81
5.2.2 Measurement Model 82
5.2.3 Calculation of Approximate Initial State 83
5.2.4 Experiment and Result Analysis 83
5.3 Indoor Positioning and Attitude Determination using
New Terrestrial Ranging Signals 88
5.3.1 Multipath Mitigation Technology 88
5.3.2 Locata Position and Attitude Computation Model 90
5.3.3 Locata PAMS Mechanization 91
5.3.4 Experiment and Analyses 93
5.4 Terrestrial Augmented GNSS Precise Point Positioning Method for
Kinematic Application 98
5.4.1 Single-Differenced GNSS Precise Point Positioning 98
5.4.2 Terrestrial Augmented PPP-GNSS System 101
5.4.3 Experiment and Result Analysis 103
References 109
Chapter 6 Ultra-Wideband-Based Indoor Localization 112
6.1 Introduction 112
6.2 Ultra-Wideband Signal 113
6.2.1 Definition of Ultra-Wideband 113
6.2.2 Advantages of Ultra-Wideband-Based Indoor Localization 114
6.3 Ultra-wideband Location Estimation 115
6.3.1 Overview 115
6.3.2 Basic Theory of Location Estimation 116
6.3.3 Non-Cooperative and Cooperative Localization Network 118
6.4 Location Error Analysis 118
6.4.1 Offset from TOA Estimation Technique 119
6.4.2 Measurement Error 120
6.4.3 NLOS Propagation 121
6.4.4 Offset from Non-Linear Least Squares Algorithm 123
6.5 Integrated with Inertial Navigation System 124
6.5.1 UWB and INS Integration Schemes 125
6.5.2 Three Issues in UWB/INS Integration 127
6.6 Case Studies 130
6.6.1 UWB Indoor Localization 130
6.6.2 UWB/INS Tightly-Coupled Integration for Localization 132
References 135
Chapter 7 Indoor Positioning Technology Based on LED Visible Lights 137
7.1 Introduction 137
7.2 Principle and Composition 138
7.2.1 Basic Principle 138
7.2.2 Composition of System 139
7.3 Encoding and Identification of Information 141
7.3.1 Encoding of information 141
7.3.2 Identification of Information 142
7.4 Positioning Methods 143
7.4.1 The Nearest Neighbor Method 143
7.4.2 Geometric Analytic Method 144
7.4.3 Scenario Analysis 148
7.4.4 Camera-Based Positioning Method 149
7.5 Experiments and Results 150
7.5.1 Experimental System and Environment 151
7.5.2 Experimental Procedures 153
7.5.3 Experimental Results 153
References 156
Chapter 8 Positioning Based on Geomagnetic Field 158
8.1 Properties of Geomagnetic Field 158
8.1.1 Basic Compositions 158
8.1.2 Basic El
Chapter 1 Introduction 1
1.1 Application Scenarios of Positioning and Navigation 1
1.2 Brief History of Indoor Positioning and Navigation 3
1.3 Overview of the Book 7
References 8
Chapter 2 Major Signal Parameters 10
2.1 Introduction 10
2.2 Received Signal Strength 11
2.3 Time of Arrival 12
2.3.1 Effect of Bandlimiting 13
2.3.2 Multipath Effect 13
2.3.3 Special Acoustic Signal 15
2.4 Angle of Arrival 16
2.4.1 Signal Processing for AOA Estimation 16
2.4.2 Beamforming for Signal Processing 16
2.4.3 TDOA for AOA Estimation 18
2.5 Range 18
2.5.1 Round-Trip Time-Based Ranging 18
2.5.2 TDOA-Based Ranging 20
2.5.3 RSS-Based Ranging 20
2.5.4 Pseudorange 21
2.6 INS Parameters 22
2.6.1 Acceleration 22
2.6.2 Turning Rate 23
2.7 Carrier Phase 24
2.8 Frequency Offset 24
2.9 Internal Radio Delay 25
2.10 Signal-to-Noise Ratio 26
References 27
Chapter 3 MEMS Sensor and Pedestrian Dead Reckoning 29
3.1 MEMS Technology 29
3.1.1 Introduction to MEMS 29
3.1.2 History of MEMS Technology 29
3.1.3 Application of MEMS Technology 31
3.2 MEMS Accelerometer and Gyroscope 37
3.2.1 MEMS Micro Accelerometer 37
3.2.2 MEMS Gyroscope 41
3.3 Pedestrian Dead Reckoning 44
3.3.1 Basic Principles 45
3.3.2 Example 49
References 51
Chapter 4 RFID Indoor Localization Techniques 53
4.1 Introduction 53
4.2 Localization Based on Improved Ranging Method 54
4.2.1 Ranging Algorithm Based on Similarity Analysis 54
4.2.2 Experimental Results 56
4.3 Localization based on Residual Weighted Multi-Dimensional Scaling 57
4.3.1 Weighted Multi-Dimensional Scaling Algorithm 58
4.3.2 Simulation and Discussion 60
4.4 Localization based on Convex Optimization 60
4.5 Localization based on Improved Fingerprinting 62
4.5.1 Basic Principle and Structure 63
4.5.2 Localization Scene 63
4.5.3 Dimensionality Reduction based on PCA 64
4.5.4 Clustering Based on K-Means 65
4.5.5 Simulation Result and Discussion 66
4.6 Localization based on Crowdsourcing 69
4.6.1 Fingerprint Database Construction Algorithm 70
4.6.2 Clustering Based on LVQ 70
4.6.3 Dimension Reduction based on MDS 71
4.6.4 Simulation Results 72
References 74
Chapter 5 Precise Positioning Using Terrestrial Ranging Technology 77
5.1 Introduction 77
5.1.1 Overview of the Terrestrial Ranging Technology 77
5.1.2 Measurements and Measurement Equations 79
5.2 Terrestrial-Based On-The-Fly Positioning Method 81
5.2.1 Dynamic Model 81
5.2.2 Measurement Model 82
5.2.3 Calculation of Approximate Initial State 83
5.2.4 Experiment and Result Analysis 83
5.3 Indoor Positioning and Attitude Determination using
New Terrestrial Ranging Signals 88
5.3.1 Multipath Mitigation Technology 88
5.3.2 Locata Position and Attitude Computation Model 90
5.3.3 Locata PAMS Mechanization 91
5.3.4 Experiment and Analyses 93
5.4 Terrestrial Augmented GNSS Precise Point Positioning Method for
Kinematic Application 98
5.4.1 Single-Differenced GNSS Precise Point Positioning 98
5.4.2 Terrestrial Augmented PPP-GNSS System 101
5.4.3 Experiment and Result Analysis 103
References 109
Chapter 6 Ultra-Wideband-Based Indoor Localization 112
6.1 Introduction 112
6.2 Ultra-Wideband Signal 113
6.2.1 Definition of Ultra-Wideband 113
6.2.2 Advantages of Ultra-Wideband-Based Indoor Localization 114
6.3 Ultra-wideband Location Estimation 115
6.3.1 Overview 115
6.3.2 Basic Theory of Location Estimation 116
6.3.3 Non-Cooperative and Cooperative Localization Network 118
6.4 Location Error Analysis 118
6.4.1 Offset from TOA Estimation Technique 119
6.4.2 Measurement Error 120
6.4.3 NLOS Propagation 121
6.4.4 Offset from Non-Linear Least Squares Algorithm 123
6.5 Integrated with Inertial Navigation System 124
6.5.1 UWB and INS Integration Schemes 125
6.5.2 Three Issues in UWB/INS Integration 127
6.6 Case Studies 130
6.6.1 UWB Indoor Localization 130
6.6.2 UWB/INS Tightly-Coupled Integration for Localization 132
References 135
Chapter 7 Indoor Positioning Technology Based on LED Visible Lights 137
7.1 Introduction 137
7.2 Principle and Composition 138
7.2.1 Basic Principle 138
7.2.2 Composition of System 139
7.3 Encoding and Identification of Information 141
7.3.1 Encoding of information 141
7.3.2 Identification of Information 142
7.4 Positioning Methods 143
7.4.1 The Nearest Neighbor Method 143
7.4.2 Geometric Analytic Method 144
7.4.3 Scenario Analysis 148
7.4.4 Camera-Based Positioning Method 149
7.5 Experiments and Results 150
7.5.1 Experimental System and Environment 151
7.5.2 Experimental Procedures 153
7.5.3 Experimental Results 153
References 156
Chapter 8 Positioning Based on Geomagnetic Field 158
8.1 Properties of Geomagnetic Field 158
8.1.1 Basic Compositions 158
8.1.2 Basic El
评论
还没有评论。