描述
开 本: 16开纸 张: 胶版纸包 装: 平装是否套装: 否国际标准书号ISBN: 9787121292620
1.1 可视化技术的产生 3
1.2 数据可视化 4
1.3 信息可视化 9
1.4 地理空间信息的可视化 14
1.5 本书主要内容及其框架 16
参考文献 17
第2章 空间数据的处理 19
2.1 多重二次曲面函数插值法 21
2.1.1 多重二次曲面函数插值法的数学原理 22
2.1.2 多重二次曲面函数插值的数值求解过程 22
2.1.3 多重二次曲面函数插值的实现方法 23
2.2 基于超曲面样条函数的真三维数据插值法 23
2.2.1 曲面样条函数简介 24
2.2.2 超曲面样条函数原理 25
2.2.3 超曲面样条函数插值算法的实例验证 26
2.3 本章小结 28
参考文献 28
第3章 大规模地形可视化 31
3.1 地形可视化研究现状 33
3.1.1 基于分形技术的地形可视化 33
3.1.2 基于真实地形数据的地形可视化 34
3.2 一种基于Perlin噪声函数的地形生成方法 37
3.2.1 Perlin噪声函数简介 37
3.2.2 二维Perlin噪声函数的构造 38
3.2.3 具有多层细节的地形生成方法 39
3.2.4 用Perlin噪声函数绘制地形的实例 40
3.3 基于Morton码的地形简化方法 40
3.3.1 Morton码的基本概念 40
3.3.2 基于Morton码的地形简化算法 41
3.3.3 用Morton码进行地形简化的应用实例 42
3.3.4 基于Morton码的地形简化算法优缺点讨论 43
3.4 基于不完全四叉树的LOD方法 43
3.4.1 实时连续LOD的特征 44
3.4.2 基于不完全四叉树LOD技术的基本原理 45
3.4.3 四叉树节点的快速访问 49
3.4.4 基于不完全四叉树LOD技术的研究实例 52
3.4.5 算法讨论 54
3.5 一种改进的ROAM算法 54
3.5.1 ROAM算法简介 54
3.5.2 改进的ROAM算法 56
3.5.3 应用实例 59
3.5.4 算法讨论 60
3.6 基于球面索引的三维地形可视化 61
3.6.1 连续球面地形LOD算法——Spherical ROAM 61
3.6.2 海量地形分页渲染技术 64
3.7 在地形上的叠加数据 66
3.7.1 在DEM上叠加纹理图像 66
3.7.2 在DEM上叠加矢量数据 67
3.7.3 数据叠加的应用实例 69
3.8 在地形上叠加三维模型 70
3.9 本章小结 71
参考文献 71
第4章 水面的可视化 75
4.1 基于中心差分法的理想水面可视化 77
4.1.1 三维水体模拟研究简介 77
4.1.2 方法原理 78
4.1.3 应用实例 82
4.2 流动河流的三维可视化算法 84
4.2.1 河道边界的提取 84
4.2.2 基于速度场的自适应河流模拟 86
4.3 本章小结 94
参考文献 95
第5章 真三维空间信息可视化 97
5.1 真三维可视化的国内外研究现状 99
5.1.1 基于面模型的构模 100
5.1.2 基于体模型的构模 101
5.1.3 混合建模 104
5.2 基于VRML的三维地质体可视化方法 105
5.2.1 原始数据的组织 105
5.2.2 地质体三维可视化的实现过程 106
5.2.3 在VRML环境下实现地质体三维可视化 107
5.2.4 应用实例及结论 108
5.3 基于三棱柱的层状体可视化 108
5.3.1 数据处理与体元描述 109
5.3.2 切割点的求解 110
5.3.3 三棱柱的剖分 110
5.3.4 应用实例 112
5.4 基于切片法的规则体可视化 114
5.4.1 用切片法实现规则体体视化的基本原理 114
5.4.2 用切片法实现规则体体视化的过程 115
5.5 基于八叉树结构的数据简化技术 116
5.5.1 八叉树结构的定义 117
5.5.2 八叉树节点的快速访问 118
5.5.3 八叉树的优点 119
5.6 基于小波的三维数据可视化 120
5.6.1 小波变换及其基本概念 120
5.6.2 多分辨分析与Mallat算法 122
5.6.3 三维小波及其在三维数据可视化中的应用 126
5.7 本章小结 129
参考文献 129
第6章 地球物理勘探数据可视化 133
6.1 CSAMT电法数据三维可视化 135
6.1.1 CSAMT数据格式与组织 135
6.1.2 CSAMT数据的插值方法 137
6.1.3 构建CSAMT场数据与虚拟切片滑动控制器 138
6.1.4 测线模型的实例 139
6.2 SGY地震数据三维可视化算法 141
6.2.1 读取地震勘探数据 143
6.2.2 建立纹理 143
6.2.3 纹理空间映射 144
6.3 重磁数据的三维可视化 145
6.3.1 读取重力(磁法)勘探数据 146
6.3.2 建立顶点缓存 146
6.3.3 计算索引缓存 147
6.3.4 进行空间变换 147
6.3.5 顶点着色 148
6.4 综合地球物理资料索引结构的快速建立 149
6.4.1 综合地球物理资料空间索引的分割方法 149
6.4.2 综合地球物理资料数据结构的递归生成 150
6.4.3 快速空间查询算法 153
6.4.4 快速异常范围值空间定位算法 154
6.4.5 查询结果的快速排序算法 154
6.4.6 地球物理资料的添加与删除算法 155
参考文献 156
第7章 天气雷达数据可视化 157
7.1 天气雷达简介 159
7.2 713型天气雷达数据可视化 159
7.2.1 数据及格式说明 159
7.2.2 数据的判读 160
7.2.3 数据的显示 160
7.2.4 结论 163
7.3 新一代天气雷达数据可视化 163
7.3.1 雷达基数据的可视化 164
7.3.2 雷达导出产品的可视化 170
参考文献 176
第8章 多维信息可视化 179
8.1 多维信息可视化研究综述 181
8.1.1 多维信息可视化技术的分类 181
8.1.2 空间多维信息可视化技术研究现状 182
8.2 基于SOM的多维信息可视化 186
8.2.1 SOM基本原理 186
8.2.2 SOM的训练算法 187
8.2.3 SOM的质量评估 188
8.2.4 原型矢量的初始化方法 189
8.2.5 矢量投影 189
8.2.6 用SOM实现多维信息可视化 190
8.2.7 SOM的多维信息可视化的应用实例 194
8.3 基于弹性网络图的多维信息可视化 197
8.3.1 弹性网络图 197
8.3.2 自适应弹性网络图 200
8.3.3 弹性网的自动学习过程 201
8.3.4 构建弹性网络图 202
8.3.5 用弹性网络图实现多维信息可视化 203
8.3.6 弹性网络图可视化的应用实例 203
8.4 流形学习的空间高维数据降维研究 207
8.4.1 流形学习算法介绍 207
8.4.2 等距映射 207
8.4.3 局部线性嵌入 209
8.5 LLE-SOFM耦合模型的多维数据可视化算法 210
8.5.1 方法原理 210
8.5.2 LLE-SOFM的应用实例 213
8.6 基于空间自相关的支持向量机空间聚类 214
8.6.1 方法原理简介 215
8.6.2 基于Moran的样本集选择 216
8.7 本章小结 217
参考文献 217
第9章 可视化空间信息挖掘 221
9.1 数据挖掘理论简介 223
9.2 可视化数据挖掘技术 224
9.2.1 Keim提出的分类体系 224
9.2.2 Card提出的分类体系 226
9.3 可视化技术在空间信息挖掘中的应用 227
9.4 本章小结 229
参考文献 229
附录A Oracle Spatial的空间数据组织方案 231
附录B 基于ArcSDE C API函数的客户端设计方法 241
附录C 三维场景交互性设计 249
前言
随着3S技术的融合和空间信息处理技术的发展与广泛应用,空间数据的可视化以及基于可视化技术的空间分析、空间数据挖掘和知识发现已经发展成为空间信息处理的重要手段和关键技术。可视化技术的使用可以帮助我们更加全面和准确地了解空间信息、分析空间规律,甚至可以为空间信息领域的生产及宏观规划进行辅助决策。本书笔者在地学可视化领域研究多年,将地形可视化、水面可视化、真三维层状地质体和规则体三维场可视化、地球物理勘探数据可视化、天气雷达数据可视化以及具有多个专题维的多维信息可视化的研究成果整理成书,系统阐述了地学可视化的算法,供从事相关研究的人员参考。
全文共9章,。第1章为引言,论述了本书研究的背景、目的和意义,介绍了空间信息可视化相关的概念以及国内外研究现状,并给出了本书的总体框架。
第2章介绍空间数据的处理方法。首先,论述了一种适合非网格化样品点研究区域的插值方法———多重二次曲面函数插值法,阐述了多重二次曲面函数插值方法的数学原理和实现过程。其次,提出了一种基于超曲面样条函数进行三维空间插值的新的三维空间插值方法,该方法将二维的曲面样条函数插值法进一步拓展到三维空间。同时给出了超曲面样条函数的构造方法以及使用该方法进行三维空间插值的数值实现过程。
第3章在详细介绍地形可视化国内外研究现状的基础上,对基于DEM数据的地形可视化算法进行了深入研究,主要内容如下包括:①基于Perlin算法生成三维随机地形;②根据Morton码编码思想实现地形DEM数据无损压缩,在此基础上进一步建立LOD模型,提出一种基于不完全四叉树的实时连续LOD技术;③对ROAM算法进行改进,提出“先分块后构模”的思想,并采用非等腰直角三角形作为地表模型的基本单元,采用数组的方式存储二叉树节点信息,运用计算机位移运算提高二叉树的访问速度;④对大尺度地形数据采用球面索引的方式进行构建,采用一种视点相关的全球地形LOD模型SROAM建立基于球体的三维场景承载平台;⑤阐述了在DEM数据上叠加点、弧段、多边形等矢量数据的方法,介绍了在三维地球上叠加三维模型的算法。
第4章主要介绍了湖面(海面)和河流水面的三维可视化方法。模拟湖面时,在兼顾真实感和效率的前提下,采用中心差分方法建立了理想水体的运动方程,进而提出了一种模拟水面三维运动效果的方法。该方法首先将水体网格化,使用布朗分形运动的形态构建整个水面。接着利用简化的流体力学方程作为水体运动的驱动因子控制各个网格处的水体高度,再通过中心差分法平滑水柱之间的高度差,从而得到连续波动的水波模型。在此基础上,从纹理映射与LOD层次模型构建两个方面讨论了较大水域运动水面的仿真方法。河流模拟方面,提出了一种基于河流速度场的河道自适应流动水体的可视化方法。该方法应用流体力学原理,实时计算稳定水流的速度,构建河流的速度场,然后运用速度场驱动并约束满足泊松碟分布的精灵纹理在河道内移动,通过对精灵纹理进行混合与渲染,使重构的水面沿着河道真实、自然地流动。
第5章在详细介绍真三维空间实体可视化研究现状的基础上对真三维的层状体和规则体数据可视化进行了研究。对于层状体数据,根据不同的用户需求,笔者将其可视化类型分为两种:一种类型只显示层状体的外表面,用户看不到层状体内的内部结构;另外一种类型则用户不仅能够看到三维实体的外部形态,而且能够看到实体的内部结构。针对种情况,提出用规则网格和两层之间的三角网构建封闭的层状体。针对第二种情况,笔者采用三棱柱作为构建层状体的基本体元实现层状体的可视化。该方法首先将原始的数据经过预处理形成各个层上下对应的网格高程数据,然后连接相邻层上下对应的网格形成四棱柱,将四棱柱沿网格对角线分开,形成三棱柱基本体元。提出了一种通用的三棱柱数据结构,以该结构为基础把三棱柱剖分的情况分为完全剖分、特殊剖分和伪剖分三大类,并给出了三类剖分的特点以及各自包含的三棱柱剖分和重组方法。对于规则体数据,笔者采用介于直接体绘制和面绘制之间的切片法来实现其可视化,用双线性插值的方法获取切割面上的属性值,并用颜色编码来表示属性值。本章后分别探讨了八叉树结构和小波算法在规则体可视化中的应用,给出了用八叉树结构和三维小波算法压缩规则体数据的一般方法。
第6章介绍了常见物探数据的可视化方法,主要针对CSAMT电法数据、SGY地震数据和重磁数据给出了可视化绘制的方法,同时也针对勘探区综合运用多种地球物理方法进行探测的情况及各类地球物理数据空间分布特点,采用一种改进的四叉树结构,建立对综合地球物理数据的空间索引,利用该数据结构实现综合地球物理数据快速空间查询,并在此基础上,实现大规模综合地球物理数据精细尺度下的物探数据高效三维可视化。
第7章主要介绍了我国气象行业常用的天气雷达数据可视化的方法。首先简要介绍了目前我国主要装备的天气雷达,包括713型数字化天气雷达和新一代天气雷达即多普勒天气雷达。然后对713型雷达数据的格式、判读及显示优化的方法做了详细探讨和研究。由于新一代天气雷达数据包括多个型号,且数据类型包括雷达基数据和雷达导出产品,笔者先以新一代天气雷达中的CINRAD/CB型雷达的基数据为例,重点研究探讨了雷达反射率可视化方法以及回波区域的提取方法。然后以雷达导出产品中的19号基本反射率产品为例,研究探讨了径向结构的基本反射率产品反演为矢量shp类型和栅格img类型回波图像的可视化步骤和方法,并对两类可视化方法的优缺点做了简单的对比分析。
第8章首先介绍了多维空间信息可视化的研究现状,然后详细介绍了SOM和弹性网络图理论在多维空间信息可视化中的应用。SOM是一种非线性的多维数据可视化方法,它能够很好地保持数据之间的邻居关系,而不是保持数据项之间的距离关系。SOM的原型矢量可以看成是样本数据的代表,也就是说通过降维以后,SOM原型矢量获得的可视化信息与原始数据是保持一致的;此外,我们也可以将SOM看成数据的模型,可以将数据与这个模型进行比较,也可以根据模型反演各种样本数据。构造弹性网络图的原理与SOM很类似,它用网络图上的节点近似表示原始的多维数据点,而网络图上的节点由一个能量小的光滑曲面决定。网络图的基本单元可以取多种形状。弹性网络图的构造是自适应的,可以实时根据新加入的数据对网络图进行调整。原始数据通过在弹性网内部坐标上的投影实现可视化。
第9章论述了可视化数据挖掘的基本概念和常用方法,探讨了可视化技术在空间信息挖掘方面的应用前景。
本书由国家科技重大专项课题“煤层气田网络化管理技术及应用软件”(2011ZX05039-004)、国家科技支撑计划项目课题“密闭式生活垃圾与餐厨废弃物收运装备与智能调控系统开发”(2012BAC25B01)、河北省自然科学基金“京津冀地区强对流天气下多场因子驱动的风暴体外推方法研究”(D2016210008)和河北省社会科学基金“京津冀地区强对流开天气气预警及应对策略研究”(HB15SH015)资助出版。
作 者
20122016年5月
评论
还没有评论。