描述
OpenCV库包含500多个函数,2500多种算法,可以扩展应用到视觉行业中的很多领域,有广泛的用途,比如安保,医学成像,模式与人脸识别,机器人和工业产品检测,等等。《学习OpenCV 3(中文版)》实用性强,内容全面,讲解透彻,可以帮助读者掌握如何构建具有一定AI(人工智能)的应用程序,使计算机能够“看见”并根据所得到的数据来做出决策。《学习OpenCV 3(中文版)》全面介绍整个OpenCV库,所有示例代码都用C 实现,同时还介绍了可以用于计算机视觉的机器学习工具。《学习OpenCV 3(中文版)》每一章都精心设计有动手练习,旨在方便课堂教学和自学,进一步帮助读者学以致用。
通过学习《学习OpenCV 3(中文版)》,读者可以奠定扎实的基础,运用计算机视觉相关知识和OpenCV库来构建简单的或者精巧复杂的应用程序。
计算机视觉是在图像处理的基础上发展起来的新兴学科。OpenCV是一个开源的计算机视觉库,是英特尔公司资助的两大图像处理利器之一。它为图像处理、模式识别、三维重建、物体跟踪、机器学习和线性代数提供了各种各样的算法。
《学习OpenCV 3(中文版)》由OpenCV发起人所写,站在一线开发人员的角度用通俗易懂的语言解释了OpenCV的缘起和计算机视觉基础结构,演示了如何用OpenCV和现有的自由代码为各种各样的机器进行编程,这些都有助于读者迅速入门并渐入佳境,兴趣盎然地深入探索计算机视觉领域。
《学习OpenCV 3(中文版)》可作为信息处理、计算机、机器人、人工智能、遥感图像处理、认知神经科学等有关专业的高年级学生或研究生的教学用书,也可供相关领域的研究工作者参考。
目录
译者序 xvii
前言 xxi
第1章
概述
1
什么是OpenCV 1
OpenCV怎么用 2
什么是计算机视觉 3
OpenCV的起源 6
OpenCV的结构 7
使用IPP来加速OpenCV 8
谁拥有OpenCV 9
下载和安装OpenCV 9
安装 9
从Git获取最新的OpenCV 12
更多的OpenCV文档 13
提供的文档 13
在线文档和维基资源 13
OpenCV贡献库 15
下载和编译Contributed模块 16
可移植性 16
小结 17
练习 17
第2章 OpenCV初探 19
头文件 19
资源 20
第一个程序:显示图片 21
第二个程序:视频 23
跳转 24
简单的变换 28
不那么简单的变换 30
从摄像头中读取 32
写入AVI文件 33
小结 34
练习 35
第3章
了解OpenCV的数据类型 37
基础知识 37
OpenCV的数据类型 37
基础类型概述 38
深入了解基础类型 39
辅助对象 46
工具函数 53
模板结构 60
小结 61
练习 61
第4章
图像和大型数组类型
63
动态可变的存储 63
cv::Mat类N维稠密数组 64
创建一个数组 65
独立获取数组元素 69
数组迭代器NAryMatIterator 72
通过块访问数组元素 74
矩阵表达式:代数和cv::Mat 75
饱和转换 77
数组还可以做很多事情 78
稀疏数据类cv::SparesMat 79
访问稀疏数组中的元素 79
稀疏数组中的特有函数 82
为大型数组准备的模板结构 83
小结 85
练习 86
第5章
矩阵操作 87
矩阵还可以做更多事情 87
cv::abs() 90
cv::add() 91
cv::addWeighted() 92
cv::bitwise_and() 94
cv::bitwise_not() 94
cv::bitwise_or() 94
cv::bitwise_xor() 95
cv::calcCovarMatrix() 95
cv::cartToPolar() 97
cv::checkRange() 97
cv::compare() 98
cv::completeSymm() 99
cv::convertScaleAbs() 99
cv::countNonZero() 100
cv::Mat cv::cvarrToMat() 100
cv::dct() 101
cv::dft() 102
cv::cvtColor() 103
cv::determinant() 106
cv::divide() 106
cv::eigen() 106
cv::exp() 107
cv::extractImageCOI() 107
cv::flip() 108
cv::gemm() 108
cv::getConvertElem()和cv::getConvertScaleElem()
109
cv::idct() 110
cv::inRange() 110
cv::insertImageCOI() 111
cv::invert() 111
cv::log() 112
cv::LUT() 112
cv::Mahalanobis() 113
cv::max() 114
cv::mean() 115
cv::meanStdDev() 116
cv::merge() 116
cv::min() 116
cv::minMaxIdx() 117
cv::minMaxLoc() 118
cv::mixChannels() 119
cv::mulSpectrums() 120
cv::multiply() 121
cv::mulTransposed() 121
cv::norm() 122
cv::normalize() 123
cv::perspectiveTransform() 125
cv::phase() 125
cv::polarToCart() 126
cv::pow() 126
cv::randu() 127
cv::randn() 127
cv::repeat() 129
cv::scaleAdd() 129
cv::setIdentity() 130
cv::solve() 130
cv::solveCubic() 131
cv::solvePoly() 132
cv::sort() 132
cv::sortIdx() 133
cv::split() 133
cv::sqrt() 134
cv::subtract() 135
cv::sum() 135
cv::trace() 135
cv::transform() 136
cv::transpose() 136
小结 137
练习 137
第6章
绘图和注释 139
绘图 139
艺术线条和填充多边形 140
字体和文字 146
小结 148
练习 148
第7章 OpenCV中的函数子 151
操作对象 151
主成分分析(cv::PCA) 151
奇异值分解cv::SVD 154
随机数发生器cv::RNG 157
小结 160
练习 160
第8章
图像、视频与数据文件
163
HighGUI模块:一个可移植的图形工具包 163
图像文件的处理 164
图像的载入与保存 165
关于codecs的一些注释 167
图片的编码与解码 168
视频的处理 169
使用cv::VideoCapture对象读取视频流 169
使用cv::VideoWriter对象写入视频 175
数据存储 176
cv::FileStorage的写入 177
使用cv::FileStorage读取文件 179
cv::FileNode 180
小结 183
练习 183
第9章
跨平台和Windows系统 187
基于Windows开发 187
HighGUI原生图形用户接口 188
通过Qt后端工作 199
综合OpenCV和全功能GUI工具包 209
小结 222
练习 222
第10章
滤波与卷积 225
概览 225
预备知识 225
滤波、核和卷积 225
边界外推和边界处理 227
阈值化操作 230
Otsu算法 233
自适应阈值 233
平滑 235
简单模糊和方框型滤波器 236
中值滤波器 238
高斯滤波器 239
双边滤波器 240
导数和梯度 242
索贝尔导数 242
Scharr滤波器 244
拉普拉斯变换 245
图像形态学 246
膨胀和腐蚀 247
通用形态学函数 250
开操作和闭操作 251
形态学梯度 254
顶帽和黑帽 256
自定义核 258
用任意线性滤波器做卷积 259
用cv::filter2D()进行卷积 259
通过cv::sepFilter2D使用可分核 260
生成卷积核 260
小结 262
练习 262
第11章
常见的图像变换
267
概览 267
拉伸、收缩、扭曲和旋转 267
均匀调整 268
图像金字塔 269
不均匀映射 273
仿射变换 274
透视变换 279
通用变换 282
极坐标映射 282
LogPolar 283
任意映射 287
图像修复 287
图像修复 288
去噪 289
直方图均衡化 292
cv::equalizeHist()用于对比均衡 294
小结 295
练习 295
第12章
图像分析
297
概览 297
离散傅里叶变换 297
cv::dft()离散傅里叶变换 298
cv::idft()用于离散傅里叶逆变换 300
cv::mulSpectrums()频谱乘法 300
使用傅里叶变换进行卷积 301
cv::dct()离散余弦变换 303
cv::idct()离散余弦逆变换 304
积分图 304
cv::integral()标准求和积分 306
cv::integral()平方求和积分 306
cv::integral()倾斜求和积分 307
Canny边缘检测 307
cv::Canny() 309
Hough变换 309
Hough线变换 309
Hough圆变换 313
距离变换 316
cv::distanceTransform()无标记距离变换 317
cv::distanceTransform()有标记距离变换 317
分割 318
漫水填充 318
分水岭算法 322
Grabcuts算法 323
Mean-Shift分割算法 325
小结 326
练习 326
第13章
直方图和模板
329
OpenCV中直方图的表示 331
cv::calcHist():从数据创建直方图 332
基本直方图操作 334
直方图归一化 334
直方图二值化 335
找出最显著的区间 335
比较两个直方图 337
直方图用法示例 339
一些复杂的直方图方法 342
EMD距离 342
反向投影 347
模板匹配 350
方差匹配方法(cv::TM_SQDIFF) 351
归一化方差匹配方法(cv::TM_SQDIFF_NORMED) 352
相关性匹配方法(cv::TM_CCORR) 352
归一化的互相关匹配方法(cv::TM_CCORR_NORMED) 352
相关系数匹配方法(cv::TM_CCOEFF) 352
归一化的相关系数匹配方法(cv::TM_CCOEFF_NORMED) 352
小结 355
练习 355
第14章
轮廓 359
轮廓查找 359
轮廓层次 360
绘制轮廓 364
轮廓实例 365
另一个轮廓实例 366
快速连通区域分析 368
深入分析轮廓 370
多边形逼近 370
几何及特性概括 372
几何学测试 377
匹配轮廓与图像 378
矩 378
再论矩 380
使用Hu矩进行匹配 383
利用形状场景方法比较轮廓 384
小结 388
练习 389
第15章
背景提取
391
背景提取概述 391
背景提取的缺点 392
场景建模 392
像素 393
帧间差分 396
平均背景法 397
累计均值,方差和协方差 403
更复杂的背景提取方法 410
结构 413
进行背景学习 414
存在移动的前景物体时进行背景学习 417
背景差分:检测前景物体 418
使用码书法的背景模型 419
关于码书法的其他想法 419
使用连通分量进行前景清理 420
小测试 423
两种背景方法的对比 425
OpenCV中的背景提取方法的封装 425
cv::BackgroundSubstractor基类 426
KB方法 427
Zivkovic方法 428
小结 431
练习 431
第16章
关键点和描述子
433
关键点和跟踪基础 433
角点检测 434
光流简介 437
Lucas-Kanade稀疏光流法 438
广义关键点和描述符 448
光流,跟踪和识别 450
OpenCV一般如何处理关键点和描述符 451
核心关键点检测方法 461
关键点过滤 497
匹配方法 499
结果显示 505
小结 508
练习 508
第17章
跟踪 511
跟踪中的概念 511
稠密光流 512
Farneback多项式扩展算法 513
Dual TV-L1模型 515
简单光流算法 519
Mean-Shift算法和Camshift 追踪 522
Mean-Shift算法 522
Camshift 526
运动模板 526
估计 533
卡尔曼滤波器 534
扩展卡尔曼滤波器简述 549
小结 551
练习 551
第18章
相机模型与标定
553
相机模型 554
射影几何基础 556
Rodrigues变换 558
透镜畸变 559
标定 562
旋转矩阵和平移向量 563
标定板 566
单应性 572
相机标定 576
矫正 587
矫正映射 587
使用cv::convertMaps()在不同表示方式之间转换矫正映射 588
使用cv::initUndistortRectifyMap()计算矫正映射 589
使用cv::remap()矫正图像 591
使用cv::undistort()进行矫正 591
使用cv::undistortPoints()进行稀疏矫正
591
与标定结合 592
小结 595
练习 596
第19章
投影与三维视觉
599
投影 600
仿射变换与透视变换 601
鸟瞰图变换实例 602
三维姿态估计 606
单摄像机姿态估计 607
立体成像 609
三角测量 610
对极几何 613
本征矩阵和基本矩阵 615
计算极线 624
立体校正 624
立体校正 628
立体匹配 638
立体校正、标定和对应的示例代码 650
来自三维重投影的深度映射 657
来自运动的结构 659
二维与三维直线拟合 659
小结 662
练习 662
第20章
机器学习基础
665
什么是机器学习 665
训练集和测试集 666
有监督学习和无监督学习 667
生成式模型和判别式模型 669
OpenCV机器学习算法 669
机器学习在视觉中的应用 671
变量的重要性 673
诊断机器学习中的问题 674
ML库中遗留的机器学习算法 678
K均值 679
马氏距离 684
小结 687
练习 687
第21章 StatModel:OpenCV中的基准学习模型 689
ML库中的常见例程 689
训练方法和cv::ml::TrainData的结构 691
预测 697
使用cv::StatModel的机器学习算法 698
朴素贝叶斯分类器 699
二叉决策树 703
Boosting方法 716
随机森林 721
期望最大化算法 725
K近邻算法 729
多层感知机 731
支持向量机 739
小结 749
练习 750
第22章
目标检测
753
基于树的目标检测技术 753
级联分类器 754
有监督学习和boosting理论 756
学习新目标 764
使用支持向量机的目标识别 772
Latent SVM用于目标识别 772
Bag of Words算法与语义分类 775
小结 780
练习 780
第23章 OpenCV的未来 783
过去与未来 783
OpenCV 3.x 784
我们上一次预测怎么样? 784
未来应用 785
目前GSoC的进展 787
社区贡献 788
OpenCV.org 789
一些关于AI的猜测 790
结语 793
附录A 平面划分 795
附录B opencv_contrib模块概述 809
附录C 标定图案 813
参考文献 819
前言
这本书提供了C 开源计算机视觉库(OpenCV)3.0版本的工作指南,介绍了计算机视觉相关领域的通用背景,以便读者更有效地使用OpenCV。
本书的目标
计算机视觉在以下四个趋势的引导下,已经成为一个快速发展的领域:
•
智能手机的出现让数以百万计的用户都拥有了相机
•
互联网和搜索引擎聚集了海量的图像和视频数据
•
计算资源变成一种廉价的商品
•
视觉算法发展得更加成熟(由于深度神经网络的出现,OpenCV也正在逐渐支持这方面技术,详情可以参考opencv_contrib中的dnn)
OpenCV通过帮助成千上万的视觉工作者去做更多富有创造性的工作,在图像处理领域扮演着重要的角色。由于OpenCV 3.x的存在,不管你是学生还是研究人员,是专家还是初学者,都可以快速建立应用,并且在OpenCV所提供的基于C 的多平台视觉基础架构上实现一个跨越性的发展。
本书的目标如下:
•
通过详细讲述函数的惯用用法以及正确用法,成为一本更好的OpenCV经典参考文档
•
帮助读者对各种计算机视觉算法的工作原理有一个基础的理解
•
培养读者,使其知道什么算法工具可以使用并且应该在什么时候使用
•
提供给读者许多有效的代码,提升其应用计算机视觉和机器学习算法的开发效率
•
针对问题代码给读者提供建议,教读者如何解决一些简单或复杂的问题
本书的写作方式是力求帮助读者快速在计算机视觉领域做一些有意思的事情,因此直观地解释了算法是如何工作的,可以指导读者设计和调试计算机视觉程序,还能够使计算机视觉和机器学习算法的形式化描述更容易理解和记忆。
本书受众
本书包含描述、工作代码示例和OpenCV 3.x库中包含的C 计算机视觉工具说明。因此,本书对各种不同类型的用户都有所帮助。
专业人士和开发者
对于需要快速设计原型或实现专业计算机视觉系统的专家而言,示例代码提供的框架可以帮助他们在此基础上进行快速开发。我们对算法的描述可以快速教会或者提醒读者如何使用它们。由于OpenCV 3.x的设计基于位于硬件加速层(HAL)之上,所以它所实现的算法都可以高效运行,并且能够无缝应用各种硬件平台的诸多加速特性。
学生
这是我们希望能广泛应用于学校的教程。直观的解释、详细的文档以及示例代码将能够帮助你在计算机视觉之路上更快地前进,做更有趣的项目,最终为这个领域开拓新的研究方向。
教师
计算机视觉是一个快速发展的领域。我们发现,让学生快速浏览容易读的文章并且教师在必要的地方进行说明,再辅之以现阶段的论文或讲座,是一种非常高效的授课方法。与此同时,学生可以提前开始课程设计,并尝试做一些更有挑战性的任务。
爱好者
计算机视觉超有趣的,让我们一起深入探索它吧。
我们致力于为读者提供丰富的指导、文档以及代码来快速建立实时的视觉应用。
本书不是什么
这本书不是正式的论文,我们的确在很多地方讨论了数学上的细节注1,但这都是为了建立一种基于此的更深层次的直觉以及阐明算法中所构建的假设之含义。在这里,我们没有尝试进行一些更加正式的数学解释,因为过多的数学解释可能会使一些人觉得枯燥。
这本书本质上来说更偏向于“应用”,它将作为一个基础的帮助,但是并不着力于介绍某个具体的计算机视觉领域分类(比如医学图像或者遥感图像分析)。
也就是说,我们相信通过阅读这里的解释,学生不仅能更好地学习理论,而且还能记住更多、更久。因此,这本书将是一个很好的理论课程的辅助教材,并且很适合入门课程或以项目为中心的课程使用。
本书例程
本书所有例程都基于OpenCV 3.x。这些代码在Linux,Windows 以及 OS X都可以运行。OpenCV也有充足的对安卓和IOS 的支持。本书所有代码都可以在本书网站(http://bit.ly/learningOpenCV3)获取,OpenCV的源码可以在GitHub(https://github.com/opencv/opencv)获取,OpenCV的预编译版本可以在SourceFroge(https://sourceforge.net/projects/opencvlibrary/)获取。
Op e nCV现在也处于开发过程中,每个季度都有新的官方版本发布。如果希望得到最新版本,可以从前述的GitHub网站得到代码更新。OpenCV的官方网站是http://opencv.org,如果是开发人员,还可以浏览它的维基页面:https://github.com/opencv/opencv/wiki。
预备知识
在大多数情况下,读者只需要了解如何使用C 编程。本书许多数学相关的段落都不是必须的并且也做出了相应的标记。本书需要的数学基础包括简单的线性代数以及基础矩阵运算,并且假设读者了解最小二乘优化、高斯分布的基础知识、贝叶斯法则以及一些简单方程的衍生和变化。
本书对数学的介绍是为了支持建立一种对算法的直觉。读者可以跳过数学部分以及算法描述部分,只阅读函数解释以及代码示例,也可以构建视觉应用并且使其正常工作。
如何使用本书
本书并不一定要按照章节顺序阅读,它可以作为一本用户手册:需要的时候,可以用来查询函数,如果你希望了解它的工作原理,请阅读该函数相关的描述。本书的意图在于提供一本指南。它提供对计算机视觉的基本理解以及如何在何时使用选择的算法。
本书的写作目的是作为计算机视觉的本科或研究生课程的辅助教材或教科书。采取的基本策略是先让学生能够快速阅读课本,然后在其他教科书或者文章中用更正式的章节进行补充阅读。每一章最后都配有练习题,可以帮助测试学生对知识的掌握程度并培养更多图像处理方面的意识。
可以采用如下任意一种方法来阅读本书。
抓取重点
先阅读第1~5章,之后只阅读你所需要的章节。除了第18章和第19章(涵盖了相机校正和双目视觉)以及第20章~第22章(涵盖机器学习),这本书并不需要按照章节顺序阅读。以项目为导向的学生和研发人员可以用这种方式阅读。
精读
坚持每周阅读两章,这样你就可以在11周之内读完第1章~第22章(第23章很短)。从项目开始,深入到具体研究领域,适当地使用额外的文献和论文作为补充。
速成
在可以理解的基础上尽可能快地浏览本书,阅读第1章~第23章,之后开始项目,并使用相关文献和论文在某一个领域进行更深入的研究。这也许是专业人员的一个选择,但也可能适合更高级的计算机视觉课程。
第20章对机器学习进行了简要的介绍,在此之后的第21章和第22章将对机器学习算法及其在OpenCV中的实现和实战进行更详细的解释。当然,机器学习是目标识别以及计算机视觉的重要组成部分,相关知识非常丰富以至于可以独立成书。专业人员会发现这本书是进一步探索的一个合适的起点,或者也可以仅仅对这一部分的OpenCV代码进行深入研究。在OpenCV 3.x中,机器学习的接口已经大大简化和统一。
我们喜欢的计算机视觉教学方式是,在学生基本能够理解算法工作原理的基础上尽可能快速展开教学,然后让他们进一步加深理解,进而开始学习有意义的课程设计,同时通过相关领域的文献和论文让学生对所选择的领域拥有更深刻和系统的认识。这种方法适用于半学期、一学期以及两学期的课程。学生可以快速开始,在对视觉项目仅仅有一般认识的时候就开始编码,等到进行更富挑战性和更耗时的工作的时候,指导教师可以提供适当的帮助。
而对于计划时间更长的课程来说,OpenCV项目本身就可以成为项目管理的指导。先建立工作系统,然后用更多的知识、细节和研究进一步加以完善。这类课程的目的是让每个项目都有一个值得自己发表的地方并且其中一些真的能够发展壮大起来。
3.x的代码框架,Buildbots、GitHub的使用,pull
request,单元测试和回归测试,文档,这些对商业软件架构来说都是很好的示例,值得参考。
本书约定
本书中使用下列约定。
斜体(Italic)
指示新的术语、URL、电子邮件地址、文件名、拓展名、路径名、文件夹和Unix工具。
固定宽度(Constant Width)
指示指令、选项、选择、变量、属性、键、函数、类型、类、命名空间、方法、模块、参数、值、对象、时间、事件句柄、XML标记、HTML标记、文件的内容或者指令的输出。
加粗固定宽度(Constant width bold)
指示指令以及其他应该由用户输入的文本。也用来着重显示代码片段。
斜体固定宽度(Constant Width Italic)
指示应当由用户提供的值取代的文本。
[…]
指示参考目录的引用。
这个标识表示建议或者一般性的笔记。
这个标识表示警告或需要注意的地方。
使用代码例程
补充材料(代码例程和练习等)都可以在https://github.com/oreillymedia/Learning-OpenCV-3_examples下载。
OpenCV不管是对于商业还是学术使用都是免费的,本书的代码我们也使用了相同的许可。不管是作为作业、研究还是商业产品,都可以使用。我们会非常感谢你在自己的文章中引用这本书,不过这不是必须的。引用通常包含标题、作者、出版商以及ISBN。
比如:“Learning OpenCV 3 by Adrian Kaehler and Gary Bradski (O’Reilly)。Copyright
2017 Adrian Kaehler, Gary Bradski, 978-1-491-93799-0。”
除了了解如何帮助你完成你的作业(最好保密),我们很乐意听到你将计算机视觉用于学术研究或者课堂教学以及使用OpenCV来帮助你开发商业产品。同样,这不是必须的,我们始终欢迎你们的来信。
O’Reilly Safari
Safari是企业、政府、教育工作者和个人的会员制培训平台。该平台的成员可以获取上千种图书、培训视频、学习路线、交互教程以及来自超过250个出版商的播放列表,包括O’Reilly Media,Harvard Business Review,Prentice Hall
Professional,Addison-Wesley Professional,Microsoft Press,Sams,Que,Peachpit
Press,Adobe,Focal Press,Cisco Press,John Wiley & Sons,Syngress,Morgan Kaufmann,IBM Redbooks,Packt,Adobe Press,FT Press,Apress,Manning,New Riders,McGraw-Hill,Jones & Bartlett,Course Technology以及其他一些出版商。
更多信息请访问http://oreilly.com/safari。
联系方式
请把你对本书的意见和疑问发给出版社:
美国:
O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
中国:
北京市西城区西直门南大街2号成铭大厦C座807室(100035)
奥莱利技术咨询(北京)有限公司
我们还有一个服务于本书的网站。那里有示例的列表以及未来版本的计划。点击http://bit.ly/learningOpenCV3了解这些信息。
评论或是询问这本书技术相关的问题,请发送邮件到[email protected]。
关于本书、课程、会议以及新闻更多信息,请访问我们的网站:http://www.oreilly.com在FaceBook上找到我们:http://facebook.com/oreilly在Twitter上关注我们:http://twitter.com/oreillymedia
在YouTube上观看我们:http://www.youtube.com/oreillymedia
第一个程序:显示图片
OpenCV提供了一些实用工具来读取从视频流到摄像机画面的各种各样的图像格式,这些工具都是HighGUI的一部分。我们将使用其中的一些工具来创建一个简单的程序,这个程序将打开一张图像并且将其显示在屏幕上(如示例2-1所示)。
示例2-1:一个简单的加载并显示图像的OpenCV程序
#include
//Include file for every supported OpenCV function
int main( int argc, char** argv ) {
cv::Mat img = cv::imread(argv[1],-1);
if( img.empty() ) return -1;
cv::namedWindow( “Example1”,
cv::WINDOW_AUTOSIZE );
cv::imshow( “Example1”, img );
cv::waitKey( 0 );
cv::destroyWindow( “Example1” );
return 0;
}
注意,OpenCV的函数都位于cv这一命名空间下,为了调用OpenCV的函数,你需要在每个函数前加上c v::,向编译器说明你所调用的函数处于c v命名空间。为了摆脱这种繁琐的工作,我们可以像示例2-2一样用using namespace cv;指令,告诉编译器假设所有函数都位于c v命名空间下。注1你还需要注意示例2-1和示例2-2在头文件上的不同,在前者中,我们使用了通用的opencv.hpp,而在后者中,我们只使用了必须的头文件来节约编译时间。
示例2-2:与示例2-1不同的是直接使用了using namespace
#include
“opencv2/highgui/highgui.hpp”
using namespace cv;
int main( int argc, char** argv ) {
Mat img = imread( argv[1], -1 );
if( img.empty() ) return -1;
注1:
当然,如果这样做,需要冒着和其他潜在的命名空间冲突的风险。如果函数f o o()已经存在于c v和s t d的命名空间,你必须指定自己使用的是位于c v::f o o()的函数还是位于std::foo()的函数。在本书中,除了示例2-2,都会指明cv::命名空间,并以此保持一个良好的编程风格。
namedWindow( “Example1”,
cv::WINDOW_AUTOSIZE );
imshow( “Example1”, img );
waitKey( 0 );
destroyWindow( “Example1” );
}
当使用命令行编译和运行时,注2示例2-1将加载一张图像到内存中并且显示到屏幕上。它会保持显示直到用户按下一个键,之后程序才会销毁窗口并退出。现在让我们来一行一行地解释代码,并花一些时间来理解每一行代码都在做什么工作。
cv::Mat img = cv::imread( argv[1], -1 );
这一行将会载入图像。注3函数cv::imread()是高级的;依据文件名来决定载入图像格式的处理。这也会自动地申请图像需要的内存,注意,cv::imread()可以读取很多种图像格式,包括BMP,DIP,JPEG,JPE,PNG,PBM,PGM,PPM,SR,RAS以及TIFF。
函数会返回一个c v::M a t结构,这个结构是Op e nCV中你将会接触最多的自带结构。OpenCV使用这个结构来处理所有类型的图像:单通道、多通道、整型、浮点数以及各种类型。紧接着的下面这一行:
if( img.empty() ) return -1;
检查这个图像是否真的被载入了。另一个高层级的函数cv::namedWindow()将会在屏幕打开一个窗口,其中可以包含需要显示的图片。
cv::namedWindow( “Example1”,
cv::WINDOW_AUTOSIZE );
该函数由HighGUI模块提供,会将一个名称赋予窗口(在这里窗口名为”Example1″)。未来HighGUI的和这个窗口的交互函数将由这个名称来指定要与哪个窗口交互。
c v::n a m e d W i n d o w第二个参数说明了Windows的特性。这可以全部设置为0(默认情况下),也可以设置为cv::WINDOW_AUTOSIZE。在之前的例子中,窗口的大小将会和载入图像的大小一致,图像将会被缩放以适应窗口的大小。在之后的例子中,窗口将会在图像载入的时候被自动缩放以适应图像的真实大小,也可能由用户自行调整。
注2:
当然,如果这样做的话,你需要冒着和其他潜在的命名空间冲突的风险。如果函数f o o()已经存在于c v和s t d的命名空间,必须指定你使用的是位于c v::f o o()的函数还是位于std::foo()的函数。在本书中,除了示例2-2,都会指明cv::命名空间,并以此保持一个良好的编程风格。
注3:
好的程序会检查argv[1]是否存在并且给用户反馈一个错误信息,但是在这里没有。我们在本书中将会简略掉这些处理并且假设读者都有足够的的知识来理解处理错误代码的方式及其重要性。
cv::imshow( “Example1”, img );
不论何时,只要在c v::M a t中拥有一个图像结构,我们都可以通过c v::i m s h o w()进行显示。c v::i m s h o w()将建一个窗口(如果这个窗口不存在,它会自动调用c v::n a m e d W i n d o w()新建一个窗口)。在调用c v::i m s
h o w()的时候,窗口将被重绘上要求的图片,并且窗口会按照要求自动调整大小(如果使用c v::W I N D O W_A U T O S I Z E参数)。
cv::waitKey(0);
c v::w a i t K e y(0);函数告诉系统暂停并且等待键盘事件。如果其传入了一个大于零的参数,它将会等待等同于该参数的毫秒时间,然后继续执行程序。如果参数被设置为0或者一个负数,程序将会无限等待直到有键被按下。
因为有c v::M a t,图像将会在生命周期结束的时候自动释放,其行为类似于标准模板库(STL)中的容器类。这种自动的内存释放由内部的引用指针所控制,最重要的是,这表示我们用不着担心图像的内存申请和释放,这将程序员从OpenCV 1.0 IplImage结构繁琐的维护工作中解放了出来。
cv::destroyWindow( “Example1” );
最后,我们可以让窗口自行销毁。函数cv::destroyWindow()将会关闭窗口并且释放掉相关联的内存空间。为了更简洁的编码,我们将会在之后的例子中略过这一步。在更长、更复杂的代码中,程序员应该在窗口的生命周期自然结束之前自主销毁窗口以防止内存泄漏。
我们下一个任务是创建一个非常简单的、几乎和本例一样的程序来读取视频文件。在此之后,我们将会开始对实际图像进行更多的操作。
评论
还没有评论。