fbpx

[email protected]

购物车

 查看订单

  • 我的帐户
东东购 | EasternEast
  • 中文书店
    • 畅销排行榜
      • 小说 畅销榜
      • 童书 畅销榜
      • 外语畅销榜
      • 管理畅销榜
      • 法律畅销榜
      • 青春文学畅销榜
    • 热门分类
      • 社会小说
      • 成功/励志 畅销榜
      • 人物传记
      • 大陆原创
      • 绘本童书
      • 影视小说
    • 文学推荐
      • 文集
      • 戏剧
      • 纪实文学
      • 名家作品
      • 民间文学
      • 中国现当代随笔
    • 新书热卖榜
      • 小说 新书热卖榜
      • 青春文学 新书热卖榜
      • 童书 新书热卖榜
      • 管理 新书热卖榜
      • 成功/励志 新书热卖榜
      • 艺术 新书热卖榜
  • 精选分类
    • 小说
    • 保健养生
    • 烹饪/美食
    • 风水/占卜
    • 青春文学
    • 童书
    • 管理
    • 成功/励志
    • 文学
    • 哲学/宗教
    • 传记
    • 投资理财
    • 亲子家教
    • 动漫/幽默
    • 法律 Legal
    • 经济 Economics
    • 所有分类
  • 关于东东
  • 帮我找书
搜索
首页工业技术原子能技术Fundamental Principles of Nuclear Engineering(核工程基本原理)

Fundamental Principles of Nuclear Engineering(核工程基本原理)

本书对核工程所涉及到的基本原理一网打尽,打通核工程所涉及到的各个领域的壁垒。

作者:俞冀阳 出版社:清华大学出版社 出版时间:2018年03月 

ISBN: 9787302490876
年中特卖用“SALE15”折扣卷全场书籍85折!可与三本88折,六本78折的优惠叠加计算!全球包邮!
trust badge

EUR €58.99

类别: 原子能技术 SKU:5c23ae31421aa985877aae01 库存: 有现货
  • 描述
  • 评论( 0 )

描述

开 本: 16开纸 张: 胶版纸包 装: 平装-胶订是否套装: 否国际标准书号ISBN: 9787302490876

编辑推荐
核工程所涉及到的知识面非常宽,除了数学、物理和化学以外,还涉及到热力学、传热、流体、电气、仪控、材料、化工、机械、核物理、反应堆理论、辐射防护等诸多领域。每一个领域都有一些基本的原理和核工程紧密相关。该书作者着力于基本原理的阐述,使核工程所涉及到的各个领域的基本原理融会贯通,实属难能可贵。该书用全英文编写,对于核电走出去培养外国留学生和中国学生熟悉专业英语词汇均有裨益。 
内容简介
本书着力于核工程所涉及领域的基本原理,打通各个领域的壁垒,使核工程所涉及到的各个领域的基本原理融会贯通,使读者能够掌握全面的知识体系。
作者简介
俞冀阳,清华大学工程物理系核能科学与工程管理研究所,副教授,博导。1994年毕业于清华大学工程物理系,1999年获清华大学工学博士后在清华大学工程物理系任教。主要从事核反应堆工程与安全方面的人才培养和科学研究工作。已出版的教材与专著有:《反应堆热工水力学》、《热工流体数值计算》、《核电厂事故分析》、《核心理学》、《核动力装置设计与优化原理》、《核工程基本原理》等。英文版专著有国际原子能机构出版的IAEA-TECDOC-1395《Comparison of Heavy Water Reactor Thermalhydraulic Code Predictions with Small Break LOCA Experimental Data》。
目  录

1Fundamentals of Mathematics and Physics

 

1.1Calculus

 

1.1.1Differential and Derivative

 

1.1.2Integral

 

1.1.3Laplace Operator

 

1.2Units

 

1.2.1Unit Systems

 

1.2.2Conversion of Units

 

1.2.3Graphics of Physical Quantity

 

Exercises

 

2Thermodynamics

 

2.1Thermodynamic Properties

 

2.2Energy

 

2.2.1Heat and Work

 

2.2.2Energy and Power

 

2.3System and Process

 

2.4Phase Change

 

2.5Property Diagrams

 

2.5.1PressureTemperature (pT) Diagram

 

2.5.2PressureSpecific Volume (pv) Diagram

 

2.5.3PressureEnthalpy (ph) Diagram

 

2.5.4EnthalpyTemperature (hT) Diagram

 

2.5.5TemperatureEntropy (Ts) Diagram

 

2.5.6EnthalpyEntropy (hs)Diagram or
Mollier Diagram

 

2.6The First Law of Thermodynamics

 

2.6.1Rankine Cycle

 

2.6.2Utilization of the First Law of
Thermodynamics in

Nuclear Power Plant

 

2.7The Second Law of Thermodynamics

 

2.7.1Entropy

 

2.7.2Carnots Principle

 

2.8Power Plant Components

 

2.8.1Turbine Efficiency

 

2.8.2Pump efficiency

 

2.8.3Ideal and Real Cycle

 

2.9Ideal Gas Law

 

Exercises

 

3Heat Transfer

 

3.1Heat Transfer Terminology

 

3.2Heat Conduction

 

3.2.1Fouriers Law of Conduction.

 

3.2.2Rectangular

 

3.2.3Equivalent Resistance

 

3.2.4Cylindrical

 

3.3Convective Heat Transfer

 

3.3.1Convective Heat Transfer Coefficient

 

3.3.2Overall Heat Transfer Coefficient

 

3.4Radiant Heat Transfer

 

3.4.1Thermal Radiation

 

3.4.2Black Body Radiation

 

3.4.3Radiation Configuration Factor

 

3.5Heat Exchangers

 

3.6Boiling Heat Transfer

 

3.6.1Flow Boiling

 

3.6.2Departure from Nucleate Boiling and
Critical Heat Flux

 

3.7Heat Generation

 

3.7.1Total Power of Reactor Core

 

3.7.2Flatten of Power

 

3.7.3Hot Channel Factor

 

3.7.4Decay Heat

 

Exercises

 

4Fluid Flow

 

4.1Continuity Equation

 

4.2Laminar and Turbulent Flow

 

4.2.1Reynolds Number and Hydraulic Diameter

 

4.2.2Flow Velocity Profiles

 

4.2.3Average (Bulk) Velocity

 

4.2.4Viscosity

 

4.3Bernoullis Equation

 

4.3.1Venturi Meter

 

4.3.2Extended Bernoullis Equation

 

4.4Head Loss

 

4.4.1Frictional Loss

 

4.4.2Minor Losses

 

4.5Natural Circulation

 

4.5.1Thermal Driving Head

 

4.5.2Conditions Required for Natural
Circulation

 

4.6TwoPhase Fluid Flow

 

4.6.1TwoPhase Friction
Multiplier

 

4.6.2Flow Patterns

 

4.6.3Flow Instability

 

4.7Some Specific Phenomenon

 

4.7.1Pipe Whip

 

4.7.2Water Hammer and Steam Hammer

 

Exercises

 

5Electrical Science

 

5.1Basic Electrical Theory

 

5.1.1The Atom

 

5.1.2Electrostatic Force

 

5.1.3Coulombs Law of
Electrostatic Charges

 

5.2Electrical Terminology

 

5.3Ohms Law

 

5.4Methods of Producing Voltage (Electricity)

 

5.4.1Electrochemistry

 

5.4.2Static Electricity

 

5.4.3Magnetic Induction

 

5.4.4Piezoelectric Effect

 

5.4.5Thermoelectricity

 

5.4.6Photoelectric Effect

 

5.4.7Thermionic Emission

 

5.5Magnetism

 

5.5.1Magnetic Flux

 

5.5.2Electromagnetism

 

5.5.3Magnetomotive Force

 

5.5.4Magnetic Field Intensity

 

5.5.5Permeability and Reluctance

 

5.5.6Magnetic Circuits

 

5.5.7BH Magnetization Curve

 

5.5.8Magnetic Induction

 

5.5.9Faradays Law of Induced
Voltage

 

5.6DC Theory

 

5.6.1DC Sources

 

5.6.2Resistance and Resistivity

 

5.6.3Kirchhoffs Law

 

5.6.4Inductors

 

5.6.5Capacitor

 

5.6.6DC Generators

 

5.6.7DC Motors

 

5.7Alternating Current

 

5.7.1Development of a SineWave Output

 

5.7.2Basic AC Reactive Components

 

5.7.3AC Power

 

5.7.4ThreePhase Circuits

 

5.7.5AC Generator

 

5.7.6AC Motor

 

5.7.7Transformer

 

Exercises

 

6Instrumentation and Control

 

6.1Temperature Detect

 

6.1.1Resistance Temperature Detector

 

6.1.2Thermocouple

 

6.1.3Temperature Detection Circuitry

 

6.2Pressure Detector

 

6.2.1BellowsType Detectors

 

6.2.2Bourdon TubeType
Detectors

 

6.2.3ResistanceType
Transducers

 

6.3Level Detector

 

6.3.1Gauge Glass

 

6.3.2Ball Float

 

6.3.3Conductivity Probe

 

6.3.4Differential Pressure Level Detectors

 

6.4Flow Measurement

 

6.4.1Venturi Flow Meter

 

6.4.2Pitot Tube

 

6.4.3Rotameter

 

6.4.4Steam Flow Measurement

 

6.5Position Measurement

 

6.5.1Synchro Equipment

 

6.5.2Limit Switch

 

6.5.3Reed Switch

 

6.5.4Potentiometer

 

6.5.5Linear Variable Differential
Transformer

 

6.6Radioactivity Measurement

 

6.6.1Radiation Type

 

6.6.2Gas Ionization Detector

 

6.6.3Proportional Counter

 

6.6.4Ionization Chamber

 

6.6.5GeigerMiller Counter

 

6.6.6Scintillation Counter

 

6.6.7Gamma Spectroscopy

 

6.6.8Miscellaneous Detectors

 

6.6.9Circuitry and Circuit Elements

 

6.6.10Detect of Neutron Flux in Reactor

 

6.6.11Nuclear Power Measurement

 

6.7Principles of Process Control

 

6.7.1Control Loop Diagrams

 

6.7.2Two Position Control Systems

 

6.7.3Proportional Control

 

6.7.4Integral Control Systems

 

6.7.5Proportional Plus Integral Control
Systems

 

6.7.6Proportional Plus Derivative Control
Systems

 

6.7.7ProportionalIntegralDerivative
Control Systems

 

6.7.8Controllers and Valve Actuators

 

Exercises

 

7Chemistry and Chemical Engineering

 

7.1Chemical Basis

 

7.1.1The Atom Structure

 

7.1.2Chemical Elements and Molecules

 

7.1.3Avogadros Number

 

7.1.4The Periodic Table

 

7.2Chemical Bonding

 

7.2.1Ionic Bond

 

7.2.2Covalent Bonds

 

7.2.3Metallic Bonds

 

7.2.4Van der Waals Forces

 

7.2.5Hydrogen Bond

 

7.3Organic Chemistry

 

7.4Chemical Equations

 

7.4.1Le Chateliers Principle

 

7.4.2Concentrations of Solutions

 

7.4.3Chemical Equations

 

7.5Acids, Bases, Salts and pH

 

7.6Corrosion

 

7.6.1Corrosion Theory

 

7.6.2General Corrosion

 

7.6.3Crud and Galvanic Corrosion

 

7.6.4Specialized Corrosion

 

7.7Water Chemistry of Reactor

 

7.7.1Chemistry Parameters of Reactor

 

7.7.2Water Treatment

 

7.7.3Dissolved Gases and Suspended Solids

 

7.7.4Water Purity

 

7.7.5Radiation Chemistry of Water

 

7.8Extraction and Refinement of Uranium

 

7.8.1Leaching of Uranium

 

7.8.2Extraction of Uranium

 

7.8.3Refining of Uranium

 

7.9Chemical Conversion of Uranium

 

7.9.1Preparation of Uranium Dioxide

 

7.9.2Preparation of UF4

 

7.9.3Preparation of UF6

 

7.9.4Preparation of Metallic Uranium

 

Exercises

 

8Material Science

 

8.1Structure of Metal

 

8.1.1Types of Crystal

 

8.1.2Grain Structure and Boundary

 

8.1.3Polymorphism

 

8.1.4Alloy

 

8.1.5Imperfections in Metals

 

8.2Properties of Metal

 

8.2.1Stress and Strain

 

8.2.2Hookes Law

 

8.2.3Relationship between Stress and Strain

 

8.2.4Physical Properties of Material

 

8.3Heat Treatment of Metal

 

8.4Hydrogen Embrittlement and Irradiation
Effect

 

8.5Thermal Stress

 

8.6Brittle Fracture

 

8.6.1Brittle Fracture Mechanism

 

8.6.2NilDuctility Transition
Temperature

 

8.7Materials in Nuclear Reactor

 

8.7.1Nuclear Fuel

 

8.7.2Structure Materials

 

8.7.3Coolant

 

8.7.4Moderator

 

Exercises

 

9Mechanical Science

 

9.1Diesel Engine

 

9.1.1Major Components of a Diesel Engine

 

9.1.2Diesel Engine Support Systems

 

9.1.3Principle of Diesel Engine

 

9.2Heat Exchanger

 

9.3Pump

 

9.3.1Centrifugal Pump

 

9.3.2Positive Displacement Pump

 

9.3.3Coolant Pump for Pressurized Water
Reactor Nuclear

Power Plant

 

9.4Valve

 

9.4.1Valve Type

 

9.4.2Basic Structure of Valve

 

9.4.3Typical Valves

 

9.4.4Pressure Relief Valve and Safety Valve

 

9.5Miscellaneous Mechanical Components

 

9.5.1Air Compressor

 

9.5.2Hydraulic Press

 

9.5.3Evaporator

 

9.5.4Steam Generator

 

9.5.5Cooling Tower

 

9.5.6Pressurizers

 

9.5.7Diffusion Separator

 

Exercises

 

10Nuclear Physics

 

10.1Atomic Nucleus

 

10.1.1Atomic Number and Mass Number

 

10.1.2Isotope

 

10.1.3Chart of Nuclides

 

10.2Mass Defect and Binding Energy

 

10.2.1Mass Loss

 

10.2.2Binding Energy

 

10.2.3Energy Level Theory

 

10.3Radioactive Decay

 

10.3.1Discovery of Radioactive Decay

 

10.3.2Category Decay

 

10.3.3Decay Chain

 

10.3.4HalfLife

 

10.3.5Radioactivity

 

10.3.6Radioactive Equilibrium

 

10.4Neutron Interactions with Matter

 

10.4.1Scattering Process

 

10.4.2Thermal Neutron

 

10.4.3Radiative Capture Effect

 

10.4.4Particle Emission

 

10.4.5Fission

 

10.5Nuclear Fission

 

10.5.1The Liquid Drop Model of Nuclear
Fission

 

10.5.2Fissile Material

 

10.5.3Specific Binding Energy

 

10.5.4The Energy Released from Nuclear
Fission

 

Exercises

 

11Reactor Theory

 

11.1Neutron Source

 

11.1.1Natural Neutron Source

 

11.1.2Artificial Neutron Source

 

11.1.3PWR Neutron Source Assembly

 

11.2Nuclear Cross Section

 

11.2.1Neutron Reaction Cross Section

 

11.2.2Mean Free Path

 

11.2.3Temperature Effects Cross Section

 

11.3Neutron Flux

 

11.3.1Ficks Law

 

11.3.2Neutron Diffusion Equation

 

11.3.3SelfShielding

 

11.4Reactor Power

 

11.4.1Fission Rate

 

11.4.2Volumetric Heat Release Rate

 

11.4.3Nuclear Power of Reactor Core

 

11.5Neutron Moderation

 

11.5.1Neutron Slowing

 

11.5.2The Release of Fission Neutron

 

11.5.3Neutron Generation Time

 

11.5.4Neutron Energy Spectrum

 

11.5.5Fermi Age Model

 

11.5.6Most Probable Neutron Velocities

 

11.6Neutron Life Cycle and Critical

 

11.6.1Multiplication Factor

 

11.6.2Four Factor Formula

 

11.6.3Effective Multiplication Factor

 

11.6.4Critical Size

 

11.6.5Criticality Calculation

 

11.7Reactivity

 

11.7.1Reactivity Coefficient

 

11.7.2Temperature Reactivity Coefficient

 

11.7.3Pressure Coefficient

 

11.7.4Void Coefficient

 

11.7.5Power Coefficient

 

11.8Neutron Poisons

 

11.8.1Burnable Poisons

 

11.8.2Soluble Poisons

 

11.8.3Control Rods

 

11.8.4Xenon

 

11.8.5Samarium

 

11.9Subcritical Multiplication

 

11.9.1Subcritical Multiplication Factor

 

11.9.2Effect of Reactivity Changes on
Subcritical Multiplication

 

11.9.3Use of 1/M Plots

 

11.10Reactor Kinetics

 

11.10.1Reactor Kinetics Equations

 

11.10.2In Hour Equation

 

11.10.3Reactor Period

 

11.11Nuclear Power Plant Operation

 

11.11.1Startup of Reactor

 

11.11.2Startup of Nuclear Power Plant

 

11.11.3Nuclear Power Plant Shutdown

 

11.11.4Status of Nuclear Power Plant

 

11.12Isotope Separation

 

11.12.1SWU and Value Function

 

11.12.2Diffusion Method of Isotope
Separation

 

11.12.3HighSpeed Centrifugation
Method

 

11.12.4Laser Method

 

11.12.5Separation Nozzle

 

11.13Nuclear Fuel Cycle

 

11.13.1Cyclic Manner

 

11.13.2Key Aspects of Nuclear Fuel Cycle

 

11.13.3Nuclear Fuel Cycle Cost

 

Exercises

 

12Radiation Protection

 

12.1Radiation Quantities and Units

 

12.1.1Describe the Amount of Radiation
Source and

Radiation Field

 

12.1.2Usual Quantities of Dosimetry

 

12.1.3Commonly Used Quantities in Radiation
Protection

 

12.2Basic Principles and Standards of
Radiation Protection

 

12.2.1The Basic Principles of Radiation
Protection

 

12.2.2Radiation Protection Standards

 

12.3Radiation Protection Methods

 

12.3.1Human Radiation Effects

 

12.3.2Deterministic Effects

 

12.3.3Random Effects

 

12.4Radiation Monitoring

 

12.5Evaluation of Radiation Protection

 

12.6Radiation Emergency

 

Exercises

 

Symbol Table

 

References

前  言

Nuclear engineering deals with quite a wide
scope of knowledge including mathematics, physics, chemistry, thermodynamics,
heat transfer, fluid flow, electricity, instrument and control, materials,
chemical engineering, mechanicals, nuclear physics, reactor theory and
radiation protection. Each of these fields has some fundamental principles
related to nuclear engineering. This textbook focuses on those fundamental
principles and makes them a whole system knowledge to understand nuclear
engineering.

Nuclear energy is a kind of clean, safety,
economical energy source and it is one of the best choices of future energy for
the whole world. It is especially suitable for China to develop nuclear energy
because of the environmental pressure caused by fossil fuel. Nuclear energy
provides about 15% of the electrical power of the whole world at present.
Although, there were some nuclear accidents in the history of nuclear industry,
advanced nuclear power plants are more and more safety, more and more
efficiency, and antinuclear proliferation. At present, the Chinese government is working
hard to adjust the structure of energy source. Nuclear energy, wind energy,
hydro energy and solar energy are developing very quickly. Based on the plan of
the government, the capacity of nuclear power plant in China will be 360 GWe,
240 GWe or 120 GWe according to different level of the development.

Based on these backgrounds, human resources
of nuclear engineering will be demanded continually. Nuclear engineering deals
with quite a wide scope of knowledge. For those who changed major to nuclear
engineering, it is a little bit of difficult to understand the whole system
knowledge in nuclear engineering field. Even for those who learn nuclear
engineering as major, it is necessary to learn all these materials on the point
view of systematic.

If the knowledge learned is not
comprehensive, it is definitely a hidden danger for nuclear safety. All persons
who want to work in the nuclear engineering field will be trained before
entering a nuclear power plant. This textbook is a kind of handbook because of
its simplicity, systematic and easy to understand. There are bunch of diagrams
and figures to understand those profound concepts without tedious derivation of
formulas.

The textbook is structured in twelve
chapters, beginning with the basic concepts of mathematics and physics, and
continuing in Chapter 2 with thermodynamics. Chapter 3 is concerned with heat
transfer. Chapter 4 discusses the principles of fluid flow. Electrical science
is introduced in Chapter 5. Instrumentation and control is discussed in Chapter
6. In Chapter 7, the fundamental principles in chemistry and chemical
engineering are presented. Chapter 8 is concerned with material science and
Chapter 9 with mechanical science. Nuclear physics and reactor theory will be
learned in Chapter 10 and Chapter 11 and radiation protection in the last.

In writing a book like this, I would like
to thank my parents and family, and my lovely colleagues in the Department of
Engineering Physics, Tsinghua University. I would like to give special
acknowledgement to all the students in the class of ITUEM 2017 for their
careful revision of the book.

Yu Jiyang

Tsinghua University

 

Beijing, August 2017

在线试读
Fundamentals of Mathematics and Physics
In engineering field, some practical problems cannot be adequately solved using arithmetic and algebra only. Advanced mathematical tools such as calculus and integral are needed to understand physical process used in nuclear engineering.1.1CalculusArithmetic involves the fixed values of numbers. Algebra involves both literal and arithmetic numbers,which still has fixed values in a given calculation although the literal numbers in algebraic problems can change during calculation.Here some examples are given. When a weight is dropped and allowed to fall freely, its velocity changes continually. The electric current in an alternating current circuit changes continually. Both of these quantities have a different value at successive instants of time. Physical systems that involve quantities that change continually are called dynamic systems. The solution of problems which involving dynamic systems often need different mathematical techniques from  arithmetic and algebra. Calculus involves all the same mathematical techniques involved in arithmetic and algebra, such as addition, subtraction, multiplication, division, equations, and functions, but it also involves several other techniques. These techniques are not difficult to understand because they can be developed using familiar physical systems, but they do involve new ideas and terminology.There are many dynamic systems encountered in nuclear engineering field. The decay of radioactive materials, the startup of a reactor, and the  power change of a turbine generator all involve quantities change with time. An analysis of these dynamic systems involves calculus. Calculus is the most helpful tools to understand certain of the basic ideas and terminology which is involved in nuclear facility field, though detailed understanding of calculus is not required for the operational aspect.These ideas and terminology are encountered frequently, and a brief introduction to the basic ideas and terminology of the mathematics of dynamic systems is discussed in this chapter.1.1.1Differential and DerivativeIn mathematics, differential is a tool to describe the local characteristic of a function using linear techniques. Suppose a function is defined in a region. x0 and x0 Δx are two points (value) in this region. Then the incremental change of the function can be expressed as1: 

Δy=f(x0 Δx)-f(x0)(11)

Using local linear technique, it can be expressed as:  

Δy=A·Δx o(Δx)(12)

where, A is a constant number independent with Δx, o(Δx) is a higher order infinite small of Δx. We call the function y=f(x) is derivable near the point of x0 and A·Δx is called as the differential of the function y =f(x) at point x0 corresponding to Δx (the incremental change of argument x). It is denoted as dy. The incremental change of argument x is the differential of x. It is denoted as dx. So we get: 

dy=Adx(13)

Here we use an example in physics to explain the concept of differential. One of the most commonly encountered mathematical applications of the dynamic system is the relationship of  position and time of a moving object. Figure 11 represents an object moving in a straight line from position P1 to position P2. The distance to P1 from a fixed reference point, point O, along the line of travel is represented by S1;  the distance to P2 from point O by S2. 

书摘插画
插图

插图

插图

插图

插图

插图

抢先评论了 “Fundamental Principles of Nuclear Engineering(核工程基本原理)” 取消回复

评论

还没有评论。

相关产品

加入购物车

核燃料循环的未来

EUR €43.99
加入购物车

核能利用与核材料

EUR €31.99
加入购物车

核事故应急撤离管理

EUR €35.99
加入购物车

第三代核电技术AP1000(第二版)

EUR €83.99

东东购的宗旨是服务喜爱阅读中文书籍的海外人民,提供一个完善的购书平台,让国人不论何时何地都能沉浸在书香之中,读着熟悉的中文字,回忆着家乡的味道。


安全加密结账 安心网络购物 支持Paypal付款

常见问题

  • 货物配送
  • 退换货政策
  • 隐私政策
  • 联盟营销

客户服务

  • 联系东东
  • 关于东东
  • 帮我找书
  • 货物追踪
  • 会员登入

订阅最新的优惠讯息和书籍资讯

选择币别

EUR
USD
CAD
AUD
NZD
NOK
GBP
CHF
SEK
CNY
UAH
ILS
SAR
MXN
KRW
MYR
SGD
HUF
TRY
JPY
HKD
TWD
facebookinstagram
©2020 东东购 EasternEast.com

限时特卖:用“SALE15”优惠券全场书籍85折!可与三本88折,六本78折的优惠叠加计算。 忽略