描述
开 本: 16开纸 张: 胶版纸包 装: 平装-胶订是否套装: 否国际标准书号ISBN: 9787121313554
全面梳理无人驾驶技术之作!
适合对无人驾驶技术感兴趣的在校学生、工业从业者,以及相关人士阅读。
- 无人驾驶技术概览
- 无人驾驶定位导航、感知、决策与控制等算法
- 深度学习、强化学习、计算机视觉在无人驾驶中的应用
- 无人驾驶安全等多个主要技术点
无人驾驶是一个复杂的系统,涉及的技术点种类多且跨度大,入门者常常不知从何入手。本书首先宏观地呈现了无人驾驶的整体技术架构,概述了无人驾驶中涉及的各个技术点。在读者对无人驾驶技术有了宏观认识后,本书深入浅出地讲解了无人驾驶定位导航、感知、决策与控制等算法,深度学习在无人驾驶中的应用,无人驾驶系统软件和硬件平台,无人驾驶安全及无人驾驶云平台等多个主要技术点。本书的作者都是无人驾驶行业的从业者与研究人员,有着多年无人驾驶及人工智能技术的实战经验。
本书从实用的角度出发,以期帮助对无人驾驶技术感兴趣的从业者与相关人士实现对无人驾驶行业的快速入门,以及对无人驾驶技术的深度理解与应用实践。
1.1 正在走来的无人驾驶 2
1.2 自动驾驶的分级 4
1.3 无人驾驶系统简介 7
1.4 序幕刚启 18
1.5 参考资料 18
2 光学雷达在无人驾驶技术中的应用 21
2.1 无人驾驶技术简介 21
2.2 光学雷达基础知识 22
2.3 LiDAR在无人驾驶技术中的应用领域 24
2.4 LiDAR技术面临的挑战 26
2.5 展望未来 28
2.6 参考资料 28
3 GPS及惯性传感器在无人驾驶中的应用 30
3.1 无人驾驶定位技术 30
3.2 GPS简介 31
3.3 惯性传感器简介 34
3.4 GPS和惯性传感器的融合 36
3.5 结论 37
3.6 参考资料 38
4 基于计算机视觉的无人驾驶感知系统 39
4.1 无人驾驶的感知 39
4.2 KITTI数据集 40
4.3 计算机视觉能帮助无人车解决的问题 42
4.4 Optical Flow和立体视觉 43
4.5 物体的识别与追踪 45
4.6 视觉里程计算法 47
4.7 结论 48
4.8 参考资料 49
5 卷积神经网络在无人驾驶中的应用 50
5.1 CNN简介 50
5.2 无人驾驶双目3D感知 51
5.3 无人驾驶物体检测 54
5.4 结论 59
5.5 参考资料 59
6 增强学习在无人驾驶中的应用 61
6.1 增强学习简介 61
6.2 增强学习算法 63
6.3 使用增强学习帮助决策 68
6.4 无人驾驶的决策介绍 70
6.5 参考资料 74
7 无人驾驶的规划与控制 75
7.1 规划与控制简介 75
7.2 路由寻径 77
7.3 行为决策 84
7.4 动作规划 93
7.5 反馈控制 101
7.6 无人车规划控制结语 105
7.7 参考资料 105
8 基于ROS的无人驾驶系统 108
8.1 无人驾驶:多种技术的集成 108
8.2 机器人操作系统(ROS)简介 110
8.3 系统可靠性 115
8.4 系统通信性能提升 116
8.5 系统资源管理与安全性 117
8.6 结论 118
8.7 参考资料 118
9 无人驾驶的硬件平台 120
9.1 无人驾驶:复杂系统 120
9.2 传感器平台 121
9.3 计算平台 140
9.4 控制平台 150
9.5 结论 157
9.6 参考资料 158
10 无人驾驶系统安全 160
10.1 针对无人驾驶的安全威胁 160
10.2 无人驾驶传感器的安全 160
10.3 无人驾驶操作系统的安全 162
10.4 无人驾驶控制系统的安全 163
10.5 车联网通信系统的安全性 165
10.6 安全模型校验方法 168
10.7 参考资料 169
11 基于Spark与ROS的分布式无人驾驶模拟平台 171
11.1 无人驾驶模拟技术 171
11.2 基于ROS的无人驾驶模拟器 173
11.3 基于Spark的分布式的模拟平台 175
11.4 结论 178
11.5 参考资料 178
12 无人驾驶中的高精度地图 180
12.1 电子地图分类 180
12.2 高精度地图的特点 183
12.3 高精度地图的生产 185
12.4 无人驾驶场景中的应用 188
12.5 高精度地图的现状与结论 190
12.6 参考资料 191
13 无人驾驶的未来 192
13.1 无人驾驶的商业前景 192
13.2 无人车面临的障碍 194
13.3 无人驾驶产业 198
13.4 全球化下的无人驾驶 203
13.5 无人驾驶发展对策 205
13.6 可预见的未来 207
13.7 参考资料 208
评论
还没有评论。