描述
开 本: 16开纸 张: 胶版纸包 装: 平装-胶订是否套装: 否国际标准书号ISBN: 9787121349218
深度学习人工智能参考书
介绍近年来自然语言处理和机器阅读的成果,配有翔实示例,助力实际应用,源代码文件供下载,业内大咖力荐
1.1 智能问答:让机器更好地服务于人 1
1.2 问答系统类型介绍 2
1.2.1 基于事实的问答系统 3
1.2.2 基于常见问题集的问答系统 3
1.2.3 开放域的问答系统 4
1.3 使用本书附带的源码程序 4
1.3.1 安装依赖软件 4
1.3.2 下载源码 5
1.3.3 执行示例程序 5
1.3.4 联系我们 6
1.4 全书结构 6
2 机器学习基础8
2.1 线性代数 8
2.1.1 标量、向量、矩阵和张量 8
2.1.2 矩阵运算 9
2.1.3 特殊类型的矩阵 10
2.1.4 线性相关 11
2.1.5 范数 12
2.2 概率论基础 12
2.2.1 随机变量 13
2.2.2 期望和方差 13
2.2.3 伯努利分布 14
2.2.4 二项分布 14
2.2.5 泊松分布 15
2.2.6 正态分布 15
2.2.7 条件概率、联合概率和全概率 17
2.2.8 先验概率与后验概率 18
2.2.9 边缘概率 18
2.2.10 贝叶斯公式 18
2.2.11 似然估计算法 19
2.2.12 线性回归模型 20
2.2.13 逻辑斯蒂回归模型 21
2.3 信息论基础 22
2.3.1 熵 23
2.3.2 联合熵和条件熵 23
2.3.3 相对熵与互信息 24
2.3.4 信道和信道容量 25
2.3.5 熵模型 26
2.3.6 信息论与机器学习 29
2.4 统计学习 29
2.4.1 输入空间、特征空间与输出空间 30
2.4.2 向量表示 30
2.4.3 数据集 31
2.4.4 从概率到函数 31
2.4.5 统计学习三要素 32
2.5 隐马尔可夫模型 33
2.5.1 随机过程和马尔可夫链 33
2.5.2 隐马尔可夫模型的定义 36
2.5.3 三个基本假设及适用场景 37
2.5.4 概率计算问题之直接计算 39
2.5.5 概率计算问题之前向算法 40
2.5.6 概率计算问题之后向算法 42
2.5.7 预测问题之维特比算法 45
2.5.8 学习问题之Baum-Welch 算法 48
2.6 条件随机场模型 52
2.6.1 超越HMM 52
2.6.2 项目实践 55
2.7 总结 59
3 自然语言处理基础60
3.1 中文自动分词 60
3.1.1 有向无环图 61
3.1.2 匹配算法 63
3.1.3 算法评测 69
3.1.4 由字构词的方法 72
3.2 词性标注 77
3.2.1 词性标注规范 77
3.2.2 隐马尔可夫模型词性标注 79
3.3 命名实体识别 81
3.4 上下文无关文法 82
3.4.1 原理介绍 83
3.4.2 算法浅析 83
3.5 依存关系分析 84
3.5.1 算法浅析 85
3.5.2 项目实践 92
3.5.3 小结 94
3.6 信息检索系统 95
3.6.1 什么是信息检索系统 95
3.6.2 衡量信息检索系统的关键指标 95
3.6.3 理解非结构化数据 97
3.6.4 倒排索引 98
3.6.5 处理查询 100
3.6.6 项目实践 102
3.6.7 Elasticsearch 103
3.6.8 小结 112
3.7 问答语料 113
3.7.1 WikiQA 113
3.7.2 中文版保险行业语料库InsuranceQA 113
3.8 总结 115
4 深度学习初步116
4.1 深度学习简史 116
4.1.1 感知机 116
4.1.2 寒冬和复苏 117
4.1.3 走出实验室 118
4.1.4 寒冬再临 119
4.1.5 走向大规模实际应用 119
4.2 基本架构 120
4.2.1 神经元 121
4.2.2 输入层、隐藏层和输出层 122
4.2.3 标准符号 123
4.3 神经网络是如何学习的 124
4.3.1 梯度下降 124
4.3.2 反向传播理论 127
4.3.3 神经网络全连接层的实现 130
4.3.4 使用简单神经网络实现问答任务 131
4.4 调整神经网络超参数 136
4.4.1 超参数 136
4.4.2 参考建议 137
4.5 卷积神经网络与池化 138
4.5.1 简介 138
4.5.2 卷积层的前向传播 139
4.5.3 池化层的前向传播 141
4.5.4 卷积层的实现 141
4.5.5 池化层的实现 145
4.5.6 使用卷积神经网络实现问答任务 148
4.6 循环神经网络及其变种 149
4.6.1 简介 149
4.6.2 循环神经网络 149
4.6.3 长短期记忆单元和门控循环单元 153
4.6.4 循环神经网络的实现 156
4.6.5 使用循环神经网络实现问答任务 159
4.7 简易神经网络工具包 160
5 词向量实现及应用161
5.1 语言模型 161
5.1.1 评测 162
5.1.2 ARPA 格式介绍 162
5.1.3 项目实践 163
5.2 One-hot 表示法 164
5.3 词袋模型 165
5.4 NNLM 和RNNLM 165
5.5 word2vec 168
5.5.1 C-BOW 的原理 169
5.5.2 Skip-gram 的原理 172
5.5.3 计算效率优化 174
5.5.4 项目实践 179
5.6 GloVe 189
5.6.1 GloVe 的原理 189
5.6.2 GloVe 与word2vec 的区别和联系 191
5.6.3 项目实践 193
5.7 fastText 198
5.7.1 fastText 的原理 198
5.7.2 fastText 与word2vec 的区别和联系 200
5.7.3 项目实践 201
5.8 中文近义词工具包 204
5.8.1 安装 205
5.8.2 接口 205
5.9 总结 205
6 社区问答中的QA 匹配206
6.1 社区问答任务简介 206
6.2 孪生网络模型 207
6.3 QACNN 模型 207
6.3.1 模型构建 207
6.3.2 实验结果 214
6.4 Decomposable Attention 模型 214
6.4.1 模型介绍 214
6.4.2 模型构建 216
6.5 多比较方式的比较?C集成模型 216
6.5.1 模型介绍 216
6.5.2 模型构建 218
6.6 BiMPM 模型 219
6.6.1 模型介绍 219
6.6.2 模型构建 221
7 机器阅读理解222
7.1 完型填空型机器阅读理解任务 222
7.1.1 CNN/Daily Mail 数据集 222
7.1.2 Children’s Book Test(CBT)数据集 223
7.1.3 GA Reader 模型 226
7.1.4 SA Reader 模型 227
7.1.5 AoA Reader 模型 228
7.2 答案抽取型机器阅读理解任务 230
7.2.1 SQuAD 数据集 231
7.2.2 MS MARCO 数据集 232
7.2.3 TriviaQA 数据集 234
7.2.4 DuReader 数据集 235
7.2.5 BiDAF 模型 235
7.2.6 R-Net 模型 237
7.2.7 S-Net 模型 240
7.3 答案选择型机器阅读理解任务 243
7.4 展望 245
参考文献 246
人工智能热潮袭来,很多人对它有着美好的预期,因为在很多工作岗位上,人们重复劳动,或者工作强度大,甚至是危险的,是不是人工智能产品能够改变这种现状?另外,技术人员出于研究的目的开始学习机器学习技术。人工智能就像是一片蓝海,甚至上升到国家战略的高度,《人工智能基础(高中版)》已经于2018
年出版,未来将有更多的人才进入这个迷人的领域。
近两年,人工智能有愈演愈烈之势,这得益于很多人对开源社区的贡献,因为从理论研究过渡到生产实践需要一个过程,开源社区大大地加速了这个过程。人工智能的创新受益于原创思想,通常这些思想以学术论文的形式发布。因此,关注arXiv
上关于使用机器学习完成各种文本任务是我的一个爱好。一些优秀的论文被发布后,也可以在GitHub
上找到对应的开源项目和开放数据集,这使得爱好者或广大技术人员不但有机会接触前沿的研究成果,而且可以实践,从而应用或继续创新。
目前,市场上有很多关于人工智能的书籍,本书是作者在学习和使用人工智能技术的过程中总结和整理而成的。我通过论文、开源项目、工作和比赛等方式慢慢进入机器学习的殿堂,回忆这两年开发人机对话系统的经历,感觉如果有一本书能从原理出发,同时也不失实践的指导意义,将会大大加速掌握机器学习的过程,于是便产生了写这样一本书的想法。
本书有助于科研人员和爱好者学习深度学习、自然语言处理和机器阅读,也可以作为深度学习和自然语言处理相关课程的教学参考书。本书配套了很多代码示例。
本书初稿由王海良、李卓桓和林旭鸣完成,经过陈可心和李思珍的编写,完善了部分章节。
在本书编写过程中,电子工业出版社的编辑郑柳洁和葛娜提供了很多帮助,在此向她们表示衷心的感谢。同时,感谢给予鼓励和支持的家人、朋友们。
由于作者水平有限,书中难免有疏漏、不当之处,欢迎读者朋友予以指正。建议或意见请发表在GitHub(https://github.com/l11x0m7/book-of-qna-code/issues)上。
——王小川,搜狗CEO——
本书不是简单地罗列算法,而是指向了如何让计算机处理语言这样一个至有挑战性的话题,以至终构造一个问答系统为目标,充满了好奇和实践精神,是陪伴你学习人工智能和语言处理难得的好书。
——刘瑞芳,北京邮电大学模式识别实验室副教授——
对于大数据时代的文本分析,读这一本书就够了。本书由浅入深,从经典方法讲到深度学习,以智能问答系统的建设为目标,涵盖了文本处理发展历程中各个里程碑式的方法。无论哪种语言,只有机器能够“理解文本”,才有可能通过图灵测试,希望本书能够促进该领域的快速发展。
——Leo Zhou,智言科技CEO——
2018
年是人工智能的大元年,机器视觉、智能语音、自然语言理解、深度学习、区块链等原本晦涩的技术术语涌入公众视野,各种信息、软文随着媒体的大量宣传变得似乎触手可及。我们可以预见未来10
年中国的人工智能将实现井喷式的增长,创业的浪潮也将推进各类AI 应用场景的落地,并塑造、培养数以万计的AI
人才。本书聚焦智能问答,在信息碎片化时代帮助读者梳理自然语言理解、机器学习、深度学习的学习逻辑,让读者更容易理解各类语义模型和算法背后的原理。希望本书能够帮助读者深入到聊天机器人的学习中。
评论
还没有评论。