描述
开 本: 16开纸 张: 胶版纸包 装: 平装-胶订是否套装: 否国际标准书号ISBN: 9787533884482丛书名: Happy Learning书系
科学故事&历史档案,一本让中学生发现“科学之美”的传奇书,一套让中学生爱上“数理化”的锦囊。
科学的内容 文学的笔法 哲学的反思 历史的脉络
中国科学院院士褚君浩强力推荐
本书以现行中学理科教材里的重要知识单元为主线,讲述了科学发现过程中许多生动有趣的科学故事,并配以大量珍贵精美的图片。不但可以让学生感受科学本身的深厚魅力,提升科学素养,还能从一个侧面巩固其课堂学习成果,激发学习兴趣,使学生“想看、爱看、看了有益”。对于教师来说,这些素材可以作为课堂教学的有益补充,用来活跃课堂气氛,深化教学内容;对于学有余力的学生来说,书中的拓展性内容还可以引导他们作进一步的学习。
1 数的出现
日常生活中,我们天天都会碰到数字。在小学,我们就开始接触0,1,2,3,…这些自然数了。可是你知道吗?从人类有计数的需要开始,到数字的出现,其间经历了一个极为漫长的过程。
2 进位制的发明
为了表示大数,人们产生了进位制的思想。古埃及人和古印度人采用十进制,但还没有数位的概念。两河流域的泥板书显示,古巴比伦人采用的是六十进制。中国是世界上第一个既采用十进制又使用位值制的国家,而且中国的八卦中也蕴含了二进制的思想。
3 超越直觉的指数
即使有了进位制,但要表示特别大的数字还是有些困难的。利用指数的概念,人们发明了科学计数法。不过,对于很多人来说,指数的含义却远远超越了他们的直觉。
4 负数和零
古人最早认识的数都是正整数,后来又认识了分数。随着数学的发展,才出现了负数和零的概念。它们的产生,使数的范围扩展到有理数。
5 从无理数到实数
有了有理数之后,是不是数的范围就到此为止了呢?答案当然是否定的。古希腊的一位数学家有一个令人惊讶的发现:边长为1的正方形的对角线的长度既不能用整数,也不能用分数表示!这个发现不但导致了无理数的诞生,更在当时的数学界掀起了一场巨大风波,史称“第一次数学危机”。直到2 000年后实数理论的建立,才让无理数在数学中真正扎下了根。
6 用字母代替数
数学是通往科学大门的钥匙,而字母则是数学的工具。我们一旦把抽象的字母和符号引入到数学之中,就摆脱了对具体数字的依赖,从而实现了数学抽象化历程中的又一次巨大飞跃。在今天看来,用字母代替数是一件司空见惯的事情,但在数学发展史上,这项工作却耗费了数学家相当长的时间。这个时间之长,也许远远超出了人们的想象!
7 代数与方程
我们在小学时就已经知道十进制、阿拉伯数字、零和一次方程,而几何证明则是中学数学的内容。就难度和深度来说,这是顺理成章的。不过耐人寻味的是,西方数学的发展史却恰好完全相反,方程的提出比几何证明晚了好多个世纪。
8 方程的近代史话
丢番图之后,特别是文艺复兴以来,代数与数论分离了,方程的求解成为代数学乃至全部数学的中心问题。直到19世纪,高斯、阿贝尔特别是伽罗瓦等人之后,代数学的巨轮才渐渐驶离方程这个航向。
9 圆周率的故事
圆周率π是我们最熟悉的数学常数之一。人们对它的认识也经历了很长的时间,在数千年的时间里,关于叮的故事有很多很多……
10 函数的历程
函数在自然科学里有着极其广泛的用途,对数学本身也十分重要。它的出现,是数学史上的一个转折点,标志着数学开始进入一个崭新的时期——变量数学时期。
11 尺规作图问题
古希腊人偏爱直尺和圆规,他们希望用尺规作出所有的图形。在此过程中,出现了著名的三大尺规作图问题。经过漫长的岁月,人们最后发现,这三大难题都是不可能实现的。
12 证法最多的定理
勾股定理是平面几何中最精彩、最著名和最有用的定理,关于它的故事有许许多多。中国古人早就提出了“勾三股四弦五”的说法;古希腊数学家毕达哥拉斯发现它后欣喜若狂,杀牛百头以示庆贺;“第一次数学危机”也由它引起。它有500多种不同的证明方法,是数学上证明方法最多的定理之一。
13 从《原本》谈起
欧几里得的《原本》是数学史上第一部用公理化思想建立起演绎体系的著作,对后世产生了巨大而深远的影响。中国明代的徐光启和利玛窦合译了该书的一部分,另外一部分过了200年才被译成中文。
14 从斐波那契数列到黄金分割
在数学史上,斐波那契数列和黄金分割是十分有名的。它们不但有丰富的数学含义,还有深厚的文化内涵。
15 旋转和对称
人类自古以来就对对称美推崇备至,对称的概念几乎已经运用到所有的科学领域。在所有的对称中,有两种是最基本、最重要的。下面就让我们来讲讲它们的故事吧。
16 测量世界(1)
几何学起源于古人对土地的丈量等活动。古埃及人在建造金字塔的过程中,使用了大量的几何学知识。中国古代的《墨经》中,讨论了很多几何概念和命题。古希腊人则奠定了古典几何学的基础。
17 测量世界(2)
三角学的出现,让人们获得了一种测量遥远距离的手段。就连宇宙的大小,我们现在也有机会去测量一下了。
18 三角函数的由来
我们都知道正弦、余弦等三角函数的名称,但事实上,三角学的概念远比函数出现得早。它起源于古希腊,目的是预测天体运行路线、推算日历等,在航海和地理中也会用到。在很长一段时间内,三角学几乎是天文学的一部分,直到16世纪,才变为数学的一个分支。
19 骰子里的大学问
我们都知道,赌博是一种恶习。不过,数学里的一门重要学科——概率论,却起源于赌场中的赌徒对胜负的计算。现在,它已被广泛应用于天气预报和保险业等各个方面。
20 平均数的意义
人们的生活离不开形形色色的数据,其中一部分是直接数据,靠测量或统计得到;另一部分是间接数据,通过对直接数据的计算得到。在间接数据中,我们经常用到的就是平均数,它是我们制订决策的好帮手。
1 数的出现
当我们看到天上的鸟儿时,我们会情不自禁地数一下它们的数目;出去旅游时,导游经常会清点游客人数,在每一处宾馆登记住宿人数。试想若没有数字,做这些事情该有多麻烦。
数字是人类符号中最基本也是最重要的发明之一。起初,人类使用符号可能是为了将信息表达得更为简洁清晰或稳定长久;但符号更重要的作用,就是帮助人类建立了抽象思维,而数字的发明大大提升了这一功能,促进了人类文明的飞速发展。
漫长的过程
高等动物对数字多少有点感觉,但是,它们对数字的感觉是很肤浅的,只能识别较小的数字。真正的计数能力为人类所独有。
有这样一则著名的故事,某天,一位苏格兰乡绅发现一只乌鸦在他的嘹望塔上筑巢,觉得十分讨厌,决定用枪把它打下来。但是,乡绅每次想接近乌鸦时,乌鸦就远远地飞到一棵树上,边唱歌边得意地看着乡绅。
“哼,难道我真拿你没办法吗?”乡绅思索良久,终于想出一条妙计。
他请来邻居帮忙。两人一起躲进塔楼,之后一个人离开,另一个人继续躲在里面。可是,乌鸦仍然呆在树枝上。第二天,三个人躲进塔楼,然后两个人陆续离开,但乌鸦还是没有上当。第三天,来了四个人,三个人陆续离开,还是没有骗过乌鸦。直到最后,五个人躲进塔楼,四个人陆续离开。这下,乌鸦数不清了,就飞回了塔楼。
至于乌鸦的最终下场如何,故事并没有交代。也许经过这次有趣的实验,那位乡绅觉得乌鸦还蛮可爱的,于是决定让它留下来继续筑巢吧。
……
评论
还没有评论。