描述
开 本: 16开纸 张: 胶版纸包 装: 平装-胶订是否套装: 否国际标准书号ISBN: 9787115505323
2.内容系统详实:本书构建了一个完整的强化学习知识体系,不仅涵盖经典强化学习的内容,还包括深度强化学习的重要成果——DQN算法、A3C算法、Rainbow算法等。使读者了解强化学习的发展历史和重要成果,助力其在强化学习领域进行创新研究和应用实践,进而找到更有价值的研究课题和应用方向。
3.兼顾理论与实践:深入全面讲解掌握深度强化学习的理论知识,并结合Python 3代码案例,将算法快速落地,降低读者的学习门槛和入门难度。
4.读者受众广泛:在结构布局和逻辑梳理上,兼顾了学术界和工业界读者的不同需求,既适用于技术工程师,也适用于研究人员和学生群体。
5.贴近技术前沿:详细介绍近年来在强化学习领域的研究进展和成果,尽可能保证本书的时效性,对学术研究和实际工作都具有很高的参考和应用价值。
6.配套源码资源:本书提供分章的配套源码,读者可到异步社区中下载并使用。
本书分为四篇:初探强化学习、求解强化学习、求解强化学习进阶和深度强化学习。涉及基础理论到深度强化学习算法框架的各方面内容,反映了深度强化学习领域过去的发展历程和研究进展,有助于读者发现该领域中新的研究问题和方向。
第 1章 强化学习绪论 3
1.1 初探强化学习 4
1.1.1 强化学习与机器学习 5
1.1.2 强化学习与监督学习的区别 6
1.1.3 历史发展 8
1.2 基础理论 10
1.2.1 组成元素 11
1.2.2 环境模型 12
1.2.3 探索与利用 12
1.2.4 预测与控制 13
1.2.5 强化学习的特点 14
1.3 应用案例 14
1.4 强化学习的思考 18
1.4.1 强化学习待解决问题 18
1.4.2 强化学习的突破点 23
1.5 小结 25
第 2章 数学基础及环境 26
2.1 简介 27
2.2 马尔可夫决策过程 27
2.2.1 马尔可夫性质 27
2.2.2 马尔可夫决策过程 27
2.3 强化学习的数学基础理论 29
2.3.1 策略 30
2.3.2 奖励 30
2.3.3 价值函数 31
2.4 求解强化学习 31
2.4.1 贝尔曼方程 31
2.4.2 最优值函数 32
2.4.3 最优策略 32
2.4.4 求解最优策略 33
2.5 示例:HelloGrid迷宫环境 36
2.5.1 初识OpenAI Gym库 37
2.5.2 建立HelloGrid环境 38
2.6 小结 43
第二篇 求解强化学习
第3章 动态规划法 47
3.1 动态规划 48
3.1.1 动态规划概述 48
3.1.2 动态规划与贝尔曼方程 48
3.2 策略评估 49
3.2.1 策略评估算法 49
3.2.2 策略评估算法实现 50
3.3 策略改进 54
3.4 策略迭代 56
3.4.1 策略迭代算法 57
3.4.2 策略迭代算法实现 58
3.5 值迭代 60
3.5.1 值迭代算法 61
3.5.2 值迭代算法实现 62
3.6 异步动态规划 64
3.6.1 In-Place动态规划 65
3.6.2 加权扫描动态规划 65
3.6.3 实时动态规划 66
3.7 讨论 66
3.8 小结 67
第4章 蒙特卡洛法 68
4.1 认识蒙特卡洛法 69
4.1.1 经验轨迹 69
4.1.2 蒙特卡洛法数学原理 74
4.1.3 蒙特卡洛法的特点 74
4.2 蒙特卡洛预测 74
4.2.1 蒙特卡洛预测算法 75
4.2.2 蒙特卡洛预测算法的实现 76
4.3 蒙特卡洛评估 80
4.4 蒙特卡洛控制 81
4.4.1 蒙特卡洛控制概述 82
4.4.2 起始点探索 84
4.4.3 非起始点探索 85
4.4.4 非固定策略 90
4.5 小结 96
第5章 时间差分法 98
5.1 时间差分概述 99
5.2 时间差分预测 99
5.2.1 时间差分预测原理 99
5.2.2 TD(λ)算法 101
5.2.3 时间差分预测特点 104
5.2.4 CartPole游戏 104
5.3 时间差分控制Sarsa算法 106
5.3.1 Sarsa算法原理 106
5.3.2 Sarsa算法实现 108
5.4 时间差分控制Q-learning算法 114
5.4.1 Q-learning算法原理 114
5.4.2 Q-learning算法实现 115
5.5 扩展时间差分控制法 121
5.5.1 期望Sarsa算法 121
5.5.2 Double Q-learning算法 121
5.6 比较强化学习求解法 123
5.7 小结 126
第三篇 求解强化学习进阶
第6章 值函数近似法 129
6.1 大规模强化学习 130
6.2 值函数近似法概述 131
6.2.1 函数近似 131
6.2.2 值函数近似的概念 133
6.2.3 值函数近似的类型 133
6.2.4 值函数近似的求解思路 134
6.3 值函数近似法原理 135
6.3.1 梯度下降算法 135
6.3.2 梯度下降与值函数近似 137
6.3.3 线性值函数近似法 138
6.4 值函数近似预测法 139
6.4.1 蒙特卡洛值函数近似预测法 139
6.4.2 时间差分TD(0)值函数近似预测法 140
6.4.3 TD(λ)值函数近似预测法 141
6.5 值函数近似控制法 142
6.5.1 值函数近似控制原理 143
6.5.2 爬山车游戏 143
6.5.3 Q-learning值函数近似 145
6.6 小结 156
第7章 策略梯度法 157
7.1 认识策略梯度法 158
7.1.1 策略梯度概述 158
7.1.2 策略梯度法与值函数近似法的区别 159
7.1.3 策略梯度法的优缺点 160
7.2 策略目标函数 161
7.2.1 起始价值 162
7.2.2 平均价值 162
7.2.3 时间步平均奖励 162
7.3 优化策略目标函数 163
7.3.1 策略梯度 163
7.3.2 评价函数 163
7.3.3 策略梯度定理 165
7.4 有限差分策略梯度法 165
7.5 蒙特卡洛策略梯度法 165
7.5.1 算法原理 166
7.5.2 算法实现 166
7.6 演员-评论家策略梯度法 177
7.6.1 算法原理 177
7.6.2 算法实现 179
7.7 小结 185
第8章 整合学习与规划 187
8.1 基于模型的强化学习概述 188
8.1.1 基于模型的强化学习 188
8.1.2 基于模型的优点 188
8.1.3 基于模型的缺点 189
8.2 学习与规划 189
8.2.1 学习过程 189
8.2.2 规划过程 191
8.3 架构整合 192
8.3.1 Dyna算法 193
8.3.2 优先遍历算法 194
8.3.3 期望更新和样本更新 196
8.4 基于模拟的搜索 196
8.4.1 蒙特卡洛搜索 197
8.4.2 蒙特卡洛树搜索 197
8.4.3 时间差分搜索 199
8.5 示例:国际象棋 199
8.5.1 国际象棋与强化学习 200
8.5.2 蒙特卡洛树搜索示例 201
8.6 小结 203
第四篇 深度强化学习
第9章 深度强化学习 207
9.1 深度学习概述 208
9.1.1 深度表征 208
9.1.2 深度神经网络 208
9.1.3 网络可训练 208
9.1.4 权值共享 210
9.2 深度神经网络(DNN) 210
9.2.1 基本单元——神经元 210
9.2.2 线性模型与激活函数 211
9.2.3 多层神经网络 212
9.2.4 训练与预测 213
9.3 卷积神经网络(CNN) 214
9.3.1 概述 214
9.3.2 卷积神经网络的核心操作 215
9.3.3 卷积神经网络的核心思想 218
9.4 循环神经网络(RNN) 220
9.4.1 序列数据建模 220
9.4.2 循环神经网络基本结构 221
9.4.3 循环神经网络模型详解 222
9.5 回顾强化学习 223
9.5.1 智能体和环境 224
9.5.2 基于价值的强化学习 225
9.5.3 基于策略的强化学习 225
9.5.4 基于模型的强化学习 225
9.6 深度强化学习 225
9.6.1 深度强化学习框架 226
9.6.2 深度强化学习应用 227
9.7 小结 230
第 10章 深度Q网络 231
10.1 DQN概述 232
10.1.1 深度学习与强化学习的差异对比 232
10.1.2 DQN算法简述 232
10.2 DQN算法核心思想 235
10.2.1 目标函数 235
10.2.2 目标网络 236
10.2.3 经验回放 236
10.3 DQN核心算法 237
10.3.1 DQN网络模型 237
10.3.2 DQN算法流程 239
10.3.3 DQN算法实现 243
10.4 DQN扩展 256
10.4.1 Double DQN 257
10.4.2 Prioritized DQN 257
10.4.3 Dueling DQN 258
10.5 小结 259
第 11章 深度强化学习算法框架 260
11.1 DDPG算法 261
11.1.1 背景介绍 261
11.1.2 基本概念及算法原理 262
11.1.3 DDPG实现框架及流程 264
11.2 A3C算法 268
11.2.1 背景介绍 269
11.2.2 A3C算法原理 269
11.2.3 异步实现框架及流程 272
11.2.4 实验效果 274
11.3 Rainbow算法 275
11.3.1 背景介绍 275
11.3.2 Rainbow算法流程 279
11.3.3 实验效果 280
11.4 Ape-X 算法 280
11.4.1 背景介绍 281
11.4.2 Ape-X算法架构 281
11.4.3 Ape-X算法流程 282
11.4.4 实验效果 284
11.5 小结 285
第 12章 从围棋AlphaGo到AlphaGo Zero 287
12.1 人工智能与围棋 288
12.1.1 强化学习与围棋 288
12.1.2 AlphaGo进化阶段 289
12.1.3 AlphaGo版本对比 290
12.2 AlphaGo算法详解 292
12.2.1 策略网络 293
12.2.2 价值网络 295
12.2.3 蒙特卡洛树搜索 296
12.2.4 实验结果 298
12.3 AlphaGo Zero算法详解 299
12.3.1 问题定义 299
12.3.2 联合网络 299
12.3.3 强化学习过程 300
12.3.4 蒙特卡洛树搜索 301
12.3.5 实验结果 303
12.4 思考 305
12.5 小结 305
附录部分
附录A 激活函数 309
附录B 损失函数 314
附录C 深度学习的超参数 319
附录D 深度学习的技巧 322
附录E 反向传播算法 329
参考文献 336
作为对话式人工智能领域的从业者,我非常关注强化学习在语义理解和对话方面的应用。本书非常系统地介绍了强化学习,将原理和实践相结合,并利用部分章节讲解了深度强化学习。对于从事
评论
还没有评论。