描述
开 本: 16开纸 张: 胶版纸包 装: 平装-胶订是否套装: 否国际标准书号ISBN: 9787564368258
目 录
第1章 系统安全性分析概述··········································································· 1
1.1 研究背景························································································· 1
1.2 安全性问题的出现············································································ 2
1.3 安全性分析发展历程与现状······························································· 2
1.4 系统安全性分析概述········································································· 5
1.5 安全性分析过程概述········································································· 9
第2章 相关适航条款解读············································································ 13
2.1 引 言··························································································· 13
2.2 FADEC系统概述············································································· 14
2.3 相关适航条款解读··········································································· 15
第3章 FADEC系统功能危害性分析(FHA)················································· 31
3.1 FHA概述······················································································· 31
3.2 FHA分析过程················································································ 32
第4章 FADEC系统故障模式及影响分析(FMEA)········································ 45
4.1 FMEA分析过程·············································································· 45
4.2 某A型航空发动机FADEC系统概述················································· 48
4.3 FADEC系统的主要部件介绍···························································· 51
4.4 FADEC系统的FMEA过程······························································· 57
第5章 基于故障树的FADEC系统安全性分析················································ 64
5.1 故障树分析方法概述······································································· 64
5.2 基于故障树的系统安全性分析·························································· 65
第6章 基于马尔可夫模型的FADEC系统安全性分析······································ 93
6.1 某B型航空发动机FADEC系统概述················································· 93
6.2 马尔可夫分析方法概述···································································· 99
6.3 FADEC系统马尔可夫分析······························································ 101
6.4 马尔可夫模型的优化模型概述························································· 113
第7章 基于蒙特卡罗模拟的FADEC系统安全性分析····································· 116
7.1 某C型航空发动机FADEC系统概述················································ 117
7.2 FADEC系统可靠性模型································································· 123
7.3 蒙特卡罗模拟的安全性分析···························································· 133
第8章 FADEC系统共模失效分析······························································· 151
8.1 共模分析概述··············································································· 151
8.2 FADEC系统共模失效分析······························································ 154
8.3 基于马尔可夫模型的EEC故障概率计算·········································· 161
附录 常用缩略语······················································································· 165
参考文献···································································································· 168
前 言
航空发动机被喻为飞机的“心脏”,而航空发动机控制系统又被喻为航空发动机的“大脑”,足见其重要性。随着航空发动机全权限数字控制系统(FADEC系统)的广泛应用,控制系统的安全性变得越来越重要,它不仅关系到航空发动机的工作是否正常,还关系到飞行安全。根据中国民用航空规章(CCAR)第33部《航空发动机适航规定》中第28条“发动机控制系统”、第75条“安全分析”以及第25部《运输类飞机适航标准》中第1309条“设备、系统及安装”等适航条款规定,FADEC系统安全性分析已经成为安装FADEC系统的航空发动机以及安装此类航空发动机的飞机开展型号合格审定,获取型号合格证必须进行的一项符合性验证工作。安全性分析是对产品的安全性进行定性和定量控制的必要手段,FADEC系统安全性分析目的是衡量FADEC系统的安全性是否达到预期的设计目标,验证安全性设计的合理性,指出它的薄弱环节、审定其是否符合初始适航条例,为改进设计、制造工艺,获取适航合格证指明方向和途径;在发动机的运营使用阶段,分析FADEC系统的安全性以及进行相应的维修与可靠性管理,对提高飞机的安全性、可靠性以及降低运营成本有着非常重要的作用。科学、合理、有效的安全性分析技术不仅能够使产品安全性分析结果更为准确,在加强对产品研制风险控制的基础上,还能够减少试验经费、缩短研制周期、改进设计和制造工艺、优化产品的维修,降低运营成本。
“十三五”期间,我国以组织实施重大科技专项为抓手,持续推进高端装备制造业的发展,全面启动实施航空发动机和燃气轮机“两机”科技重大专项,希望解决航空发动机技术在我国航空技术发展中的这一弱项问题。在国际上,波音和空客作为当今两大航空界巨头,以其技术上的绝对优势,多年来一直垄断着民用航空市场,同样,在安全性分析技术方面也是一直处于前沿。由于我国的航空工业整体上跟国外发达国家有一定的差距,系统安全性分析技术在民用飞机上的应用与国外相比相对较滞后,实际经验不足,也存在一些问题。随着航空发动机FADEC系统的日趋复杂化,以及分析验证技术的不断发展,FADEC系统安全性分析方法也在不断地改进和提升。尽早掌握该分析方法无疑会缩小我国与发达国家之间的差距。所以,航空发动机FADEC系统安全性分析方法这一研究工作的展开对改进系统安全性分析方法技术、加强航空发动机FADEC系统安全性分析力度,提高航空发动机FADEC系统的可靠性和提升我国民用航空发动机适航审定能力具有重要的战略意义。
本书得到中国民用航空局安全能力建设资金项目(AADSA0020)、中国民用航空飞行学院科研研究中心经费项目(JG2019-02)、中国民用航空飞行学院科研基金面上项目(J2014-31和J2018-57)资助,由中国民用航空飞行学院闫锋副教授、付尧明教授和中国民用航空科学技术研究院付金华高级工程师、金奕山高级工程师共同完成,可以作为相关专业学生的学习参考书,也可作为业内的参考用书。
书中相关技术方法已申请到了中国发明专利(201710914936.9)知识产权 保护。
本书编写过程中得到中国民用航空局航空器适航审定司郭强、赵晋玉和中国民用航空科学研究院刘薇薇等领导,以及中国民用航空飞行学院唐庆如、朱新宇等领导的大力支持和帮助。同时对提供参考和辅助资料的单位和人员,以及参与本书相关工作的付继龙、魏俊栋、万江涛、赵恒等同学,作者在此一并深表谢意。
由于作者水平有限,书中错误和疏漏在所难免,恳请读者批评斧正,待其渐臻完善(邮箱:[email protected])。
闫锋
2019年1月于中国民用航空飞行学院
评论
还没有评论。