描述
开 本: 128开纸 张: 胶版纸包 装: 平装-胶订是否套装: 是国际标准书号ISBN: 9787568268165
第二篇 线性代数一、行列式………………………………………………………………………………51二、矩阵…………………………………………………………………………………52三、向量组的线性相关和线性无关……………………………………………………58四、向量组的线性表示…………………………………………………………………59五、向量组的等价………………………………………………………………………60六、方程组………………………………………………………………………………61七、特征值与特征向量…………………………………………………………………67八、相似…………………………………………………………………………………70九、二次型化标准形、规范形…………………………………………………………72十、合同…………………………………………………………………………………73十一、正定………………………………………………………………………………73
第三篇 概率论与数理统计一、事件与概率…………………………………………………………………………77二、一维随机变量及其分布……………………………………………………………79三、二维随机变量及其分布……………………………………………………………81四、数字特征……………………………………………………………………………84五、大数定律与中心极限定理…………………………………………………………89六、统计量………………………………………………………………………………90七、点估计………………………………………………………………………………92解析目录第一篇 微积分第1章 极限、连续…………………………………………………………………………1一、函数极限……………………………………………………………………………… 1二、无穷小比阶…………………………………………………………………………… 11三、数列极限……………………………………………………………………………… 14四、连续与间断…………………………………………………………………………… 25第2章 一元函数微分学……………………………………………………………………30一、一点的导数问题……………………………………………………………………… 30二、导数计算……………………………………………………………………………… 34三、导数应用……………………………………………………………………………… 39四、中值定理、方程的根、不等式……………………………………………………… 47第3章 一元函数积分学……………………………………………………………………57一、概念与性质………………………………………………………………………… …57二、一元积分比大小………………………………………………………………… ……59三、定积分定义…………………………………………………………………………… 60四、分部积分法…………………………………………………………………………… 63五、换元法………………………………………………………………………………… 68六、有理函数积分………………………………………………………………………… 71七、不可求积可抵消……………………………………………………………………… 72八、分段函数定积分……………………………………………………………………… 73九、变限积分……………………………………………………………………………… 75十、一元积分的复杂与特色计算………………………………………………………… 79十一、反常积分判敛与计算……………………………………………………………… 82十二、一元积分的几何应用……………………………………………………………… 86十三、平均值……………………………………………………………………………… 91十四、一元积分不等式…………………………………………………………………… 91第4章 多元函数微分学……………………………………………………………………94一、概念…………………………………………………………………………………… 94二、多元微分法…………………………………………………………………………… 96三、多元函数的极值、最值问题………………………………………………………… 101第5章 二重积分……………………………………………………………………………111一、概念与性质…………………………………………………………………………… 111二、积分比大小…………………………………………………………………………… 115三、计算…………………………………………………………………………………… 115第6章 常微分方程与差分方程……………………………………………………………125第7 章 级数……………………………………………………………………………… 137一、正项级数………………………………………………………………………………137二、交错级数………………………………………………………………………………141三、综合……………………………………………………………………………………143四、求收敛半径、收敛域、阿贝尔定理…………………………………………………144五、级数展开与求和………………………………………………………………………145
第二篇 线性代数一、行列式………………………………………………………………………………157二、矩阵…………………………………………………………………………………161三、向量组的线性相关和线性无关……………………………………………………175四、向量组的线性表示…………………………………………………………………179五、向量组的等价………………………………………………………………………181六、方程组………………………………………………………………………………182七、特征值与特征向量…………………………………………………………………196八、相似…………………………………………………………………………………208九、二次型化标准形、规范形…………………………………………………………219十、合同…………………………………………………………………………………221十一、正定………………………………………………………………………………224
第三篇 概率论与数理统计一、事件与概率…………………………………………………………………………226二、一维随机变量及其分布……………………………………………………………231三、二维随机变量及其分布……………………………………………………………238四、数字特征……………………………………………………………………………248五、大数定律与中心极限定理…………………………………………………………264六、统计量………………………………………………………………………………266七、点估计………………………………………………………………………………269
评论
还没有评论。