fbpx

[email protected]

购物车

 查看订单

  • 我的帐户
东东购 | EasternEast
  • 中文书店
    • 畅销排行榜
      • 小说 畅销榜
      • 童书 畅销榜
      • 外语畅销榜
      • 管理畅销榜
      • 法律畅销榜
      • 青春文学畅销榜
    • 热门分类
      • 社会小说
      • 成功/励志 畅销榜
      • 人物传记
      • 大陆原创
      • 绘本童书
      • 影视小说
    • 文学推荐
      • 文集
      • 戏剧
      • 纪实文学
      • 名家作品
      • 民间文学
      • 中国现当代随笔
    • 新书热卖榜
      • 小说 新书热卖榜
      • 青春文学 新书热卖榜
      • 童书 新书热卖榜
      • 管理 新书热卖榜
      • 成功/励志 新书热卖榜
      • 艺术 新书热卖榜
  • 精选分类
    • 小说
    • 保健养生
    • 烹饪/美食
    • 风水/占卜
    • 青春文学
    • 童书
    • 管理
    • 成功/励志
    • 文学
    • 哲学/宗教
    • 传记
    • 投资理财
    • 亲子家教
    • 动漫/幽默
    • 法律 Legal
    • 经济 Economics
    • 所有分类
  • 关于东东
  • 帮我找书
搜索
首页计算机/网络数据库数据挖掘与应用:以SAS和R为工具(第二版)

数据挖掘与应用:以SAS和R为工具(第二版)

作者:张俊妮 出版社:北京大学出版社 出版时间:2018年10月 

ISBN: 9787301299098
年中特卖用“SALE15”折扣卷全场书籍85折!可与三本88折,六本78折的优惠叠加计算!全球包邮!
trust badge

EUR €38.99

类别: 研究生/本科/专科教材, 数据库 SKU:5d847ab85f984910454157dd 库存: 有现货
  • 描述
  • 评论( 0 )

描述

开 本: 16开国际标准书号ISBN: 9787301299098

编辑推荐
* 数据挖掘领域的经典教材,基于北京大学光华管理学院“数据挖掘与应用”课程。
* “哈佛小魔女”,中科院少年班天才统计学家张俊妮教授十年一剑之作。
* 加入大量医疗、金融、营销、保险、政府部门等应用案例。
* 再版加入40余堂视频课程,以及SAS和R语言代码,购书扫描二维码免费观看下载。
* 可用于高校经管、统计、计算机专业,商学院师生教材使用,同时从业者,以及所有想提高数据挖掘技术的非专业读者,可以配合视频课程自学精进。 
内容简介
  《数据挖掘与应用:以SAS和R为工具(第二版)》是数据挖掘领域的经典教材,基于北京大学光华管理学院“数据挖掘与应用”课程。书中系统、全面地介绍了数据挖掘领域的理论、技术工具以及实践方法。主要内容包括:数据挖掘方法论、数据理解和数据准备、缺失数据、关联规则挖掘、多元统计降维、聚类分析、线性回归和广义线性回归、回归模型规则化、神经网络、决策树、支持向量机、模型评估、模型组合、协同过滤等。
  书中在每种数据挖掘技术后,均辅以大量医疗、金融、营销、保险、政府部门等应用案例,并均配有相关应用的SAS和R语言代码,以及视频课程二维码。
  第二版更新:第二版在头一版的基础上,增加了缺失数据、回归模型中的规则化和变量选择、卷积神经网络、支持向量机、协同过滤这5章内容。在已有各章内,本书亦增加了新的内容和示例。近些年来,R因为其自由、免费、开源,已经发展为数据分析领域*强大的软件之一。因此,本书除了继续展示SAS程序,还增加了R程序。
作者简介
  张俊妮:美国哈佛大学统计学博士,北京大学光华管理学院商务统计及经济计量系副教授。研究领域包括:贝叶斯分析、因果推断、数据挖掘及文本挖掘。在Journal of American Statistical Association、Statistica Sinica、等期刊上发表二十余篇论文,出版英文专著。曾获北京大学教学优秀奖、光华管理学院优秀课程奖。
目  录
前言

第 1 章 数据挖掘概述 01
1.1 什么是数据挖掘 02
1.2 统计思想在数据挖掘中的重要性 02
1.3 数据挖掘的应用案例 07
1.4 CRISP-DM 数据挖掘方法论 14
1.5 SEMMA 数据挖掘方法论 15

第 2 章 数据理解和数据准备 17
2.1 数据理解 19
2.2 数据准备 22
2.3 数据理解和数据准备示例: FNBA 信用卡数据 35

第 3 章 缺失数据 51
3.1 缺失数据模式和缺失数据机制 52
3.2 缺失数据机制对数据分析的影响 53
3.3 缺失值插补 62
3.4 缺失数据插补及分析示例:纽约空气质量 64

第 4 章 关联规则挖掘 73
4.1 关联规则的实际意义 74
4.2 关联规则的基本概念及 Apriori 算法 74
4.3 序列关联规则 80
4.4 关联规则挖掘示例 81
4.5 关联规则挖掘的其他讨论 85

第 5 章 多元统计中的降维方法 88
5.1 主成分分析 89
5.2 探索性因子分析 97
5.3 多维标度分析 104

第 6 章 聚类分析 111
6.1 距离与相似度的度量 113
6.2 k 均值聚类算法 117
6.3 层次聚类法 122

第 7 章 预测性建模的一些基本方法 130
7.1 判别分析 131
7.2 朴素贝叶斯分类算法 134
7.3 k 近邻法 137
7.4 线性回归 141
7.5 广义线性模型 149

第 8 章 回归模型中的规则化和变量选择 168
8.1 线性回归中的规则化和变量选择 169
8.2 广义线性模型中的规则化和变量选择 181

第 9 章 神经网络的基本方法 184
9.1 神经网络架构及基本组成 185
9.2 误差函数 190
9.3 神经网络训练算法 193
9.4 提高神经网络模型的可推广性 198
9.5 数据预处理 200
9.6 神经网络建模示例 201
9.7 自组织图 222

第 10 章 卷积神经网络 230
10.1 深度神经网络 231
10.2 卷积神经网络架构 232
10.3 卷积神经网络示例: Fashion-MNIST 数据 239

第 11 章 决策树方法 245
11.1 决策树简介 246
11.2 决策树的生长与修剪 248
11.3 对缺失数据的处理 155
11.4 变量选择 256
11.5 决策树的优缺点 257

第 12 章 支持向量机 274
12.1 支持向量机用于二分类问题 275
12.2 支持向量机用于多分类问题 284
12.3 支持向量机用于回归问题 285

第 13 章 模型评估 290
13.1 因变量为二分变量的情形 291
13.2 因变量为多分变量的情形 301
13.3 因变量为连续变量的情形 303
13.4 模型评估示例:德国信用数据的模型评估 304

第 14 章 模型组合与两阶段模型 312
14.1 模型组合 313
14.2 随机森林 321
14.3 两阶段模型 324

第 15 章 协同过滤 326
15.1 基于用户(User-based)的协同过滤 327
15.2 基于物品(Item-based)的协同过滤 328
15.3 基于 SVD 的协同过滤 328
15.4 基于 Funk SVD 的协同过滤 329
15.5 协同过滤示例:动漫片推荐 331

参考文献 337

抢先评论了 “数据挖掘与应用:以SAS和R为工具(第二版)” 取消回复

评论

还没有评论。

相关产品

阅读更多
缺货

数据结构与算法:Python语言描述

EUR €31.99
阅读更多
缺货

Spark快速大数据分析

EUR €38.99
阅读更多
缺货

SQL必知必会(第4版)

EUR €20.99
加入购物车

医疗大数据

EUR €39.99

东东购的宗旨是服务喜爱阅读中文书籍的海外人民,提供一个完善的购书平台,让国人不论何时何地都能沉浸在书香之中,读着熟悉的中文字,回忆着家乡的味道。


安全加密结账 安心网络购物 支持Paypal付款

常见问题

  • 货物配送
  • 退换货政策
  • 隐私政策
  • 联盟营销

客户服务

  • 联系东东
  • 关于东东
  • 帮我找书
  • 货物追踪
  • 会员登入

订阅最新的优惠讯息和书籍资讯

选择币别

EUR
USD
CAD
AUD
NZD
NOK
GBP
CHF
SEK
CNY
UAH
ILS
SAR
MXN
KRW
MYR
SGD
HUF
TRY
JPY
HKD
TWD
facebookinstagram
©2020 东东购 EasternEast.com

限时特卖:用“SALE15”优惠券全场书籍85折!可与三本88折,六本78折的优惠叠加计算。 忽略