描述
开 本: 16开纸 张: 胶版纸包 装: 平装-胶订是否套装: 否国际标准书号ISBN: 9787121335495丛书名: 高级大数据人才培养丛书
编辑推荐
内容简介
本书是面对当前大数据应用、可视分析研究和应用的新形势,专门为数据科学与大数据技术、智能科学与技术、计算机、数据处理等专业本科生开设数据可视化课程而编写的一本教材。该书将教学之严谨和科研之创新有机地结合,全面诠释了大数据可视化的内涵与外延,详细介绍了大数据可视化概述、可视化的类型与模型、数据可视化基础、数据可视化的常用方法、大数据可视化的关键技术、可视化交互、大数据可视化工具、大数据可视化系统——魔镜以及大数据可视化的行业案例等内容。为了便于学习,每章都附有习题。
目 录
第1章 大数据可视化概述 1
1.1 大数据可视化的概念 1
1.1.1 科学可视化 4
1.1.2 信息可视化 5
1.1.3 数据可视化 5
1.2 数据可视化的作用与意义 5
1.2.1 数据可视化的作用 5
1.2.2 数据可视化的意义 6
1.3 数据可视化的应用领域 9
1.3.1 在“工业4.0”中的应用 9
1.3.2 在智能交通中的应用 11
1.3.3 在新一代人工智能领域的应用 16
1.3.4 在其他领域的应用 16
1.4 与相关学科的关系 19
1.4.1 与计算机图形学的关系 20
1.4.2 与计算机视觉的关系 20
1.4.3 与计算仿真的关系 20
1.4.4 与人机交互的关系 21
1.4.5 与数据库的关系 21
1.4.6 与数据分析和数据挖掘的关系 21
习题 22
参考文献 23
第2章 可视化的类型与模型 24
2.1 可视化的类型 24
2.1.1 科学可视化 24
2.1.2 信息可视化 30
2.2 可视化的模型 39
2.2.1 顺序模型 39
2.2.2 分析模型 40
2.2.3 循环模型 41
习题 43
参考文献 43
第3章 数据可视化基础 45
3.1 光与视觉特性 45
3.1.1 光的特性 45
3.1.2 三基色原理 46
3.1.3 黑白视觉特性 47
3.1.4 彩色视觉特性 52
3.2 可视化的基本特征 55
3.3 可视化流程 56
3.3.1 可视化的基本步骤 56
3.3.2 可视化的一般流程 57
3.4 可视化设计组件 60
3.4.1 可视化设计模型 60
3.4.2 可视化设计原则 60
3.4.3 可视化的数据 61
3.4.4 可视化的原材料 62
3.4.5 可视化的基本图表 62
3.5 可视化中的美学因素 64
3.6 可视化框架设计整体思路 65
3.6.1 可视化框架的构成 66
3.6.2 数据图形映射的流程 66
习题 67
参考文献 68
第4章 数据可视化的常用方法 70
4.1 视觉编码 70
4.1.1 视觉感知 71
4.1.2 视觉通道 72
4.1.3 数据分类 73
4.1.4 常用的复杂数据处理方法 74
4.2 统计图表可视化方法 74
4.2.1 柱状图 75
4.2.2 条形图 77
4.2.3 折线图 78
4.2.4 饼图 79
4.2.5 散点图 79
4.2.6 气泡图 79
4.2.7 雷达图 80
4.3 图可视化方法 80
4.3.1 图的类型 80
4.3.2 图论可视化 81
4.3.3 思维导图 81
4.4 可视化分析方法的常用算法 83
4.4.1 可视化分析方法 84
4.4.2 可视分析研究的特点 85
4.4.3 可视分析的应用实例 86
4.4.4 主成分分析 88
4.4.5 聚类分析 90
4.4.6 因子分析 91
4.4.7 层次分析法 91
4.5 可视化方法的选择 92
4.5.1 百度地图开发 93
4.5.2 城市人流走势 93
4.5.3 商圈人流对比 94
4.5.4 D3.js和Echarts选择上的建议 94
4.5.5 优秀的数据可视化作品欣赏 94
习题 95
参考文献 95
第5章 大数据可视化的关键技术 97
5.1 大数据架构 97
5.1.1 系统协调者 100
5.1.2 数据提供者 100
5.1.3 大数据应用提供者 100
5.1.4 大数据框架提供者 102
5.1.5 数据消费者 103
5.1.6 安全和隐私 103
5.1.7 管理 103
5.2 大数据核心技术 104
5.2.1 数据收集 104
5.2.2 数据预处理 104
5.2.3 数据存储 105
5.2.4 数据处理 107
5.2.5 数据分析 108
5.2.6 数据治理 110
5.3 可视化关键技术 110
5.4 大数据可视化渲染 112
5.4.1 图像相关概念 112
5.4.2 渲染技术概述 114
5.4.3 基于CPU的渲染 115
5.4.4 基于GPU的渲染 116
5.4.5 集群渲染技术 118
5.4.6 云渲染 122
习题 123
参考文献 124
第6章 可视化交互 125
6.1 可视化交互方法分类 125
6.1.1 平移 缩放技术 126
6.1.2 动态过滤技术 127
6.1.3 概览 细节技术 128
6.1.4 焦点 上下文技术 129
6.1.5 多视图关联协调技术 130
6.2 可视化交互空间 131
6.2.1 可视化交互空间查询 131
6.2.2 可视化交互空间分析 132
6.2.3 交互空间分类 133
6.3 可视化交互模型 134
6.3.1 交互式信息可视化的用户界面模型 135
6.3.2 支持信息多面体可视分析界面模型(IMFA) 138
6.3.3 交互式可视化的关联规则挖掘模型 138
6.3.4 基于Web的交互式数据可视化模型 140
6.3.5 基于交互技术的知识可视化模型 142
6.4 交互硬件与软件 145
6.4.1 交互硬件 145
6.4.2 交互软件 147
6.4.3 交互系统 148
习题 151
参考文献 152
第7章 大数据可视化工具 153
7.1 Excel 153
7.1.1 Power Map简介 153
7.1.2 Power Map的使用 153
7.1.3 数据可视化示例 155
7.2 Processing 155
7.2.1 Processing开发环境简介 156
7.2.2 Processing绘制功能 156
7.2.3 Processing应用程序的结构 158
7.2.4 数据可视化举例 159
7.3 NodeXL 161
7.3.1 NodeXL简介 161
7.3.2 系统界面 162
7.3.3 数据获取与编辑 163
7.3.4 数据可视化 163
7.3.5 图形分析与数据过滤 164
7.4 ECharts 165
7.4.1 ECharts架构及特点 165
7.4.2 基本组成 166
7.4.3 引入ECharts 167
7.4.4 图表绘制 167
7.5 Tableau 174
7.5.1 Tableau简介 175
7.5.2 Tableau的使用 175
7.5.3 Tableau数据可视化实例 178
习题 181
参考文献 182
第8章 大数据可视化系统——魔镜 183
8.1 魔镜简介 183
8.2 系统架构与技术流程 184
8.3 数据处理与分析 185
8.4 数据可视化 188
习题 193
参考文献 193
1.1 大数据可视化的概念 1
1.1.1 科学可视化 4
1.1.2 信息可视化 5
1.1.3 数据可视化 5
1.2 数据可视化的作用与意义 5
1.2.1 数据可视化的作用 5
1.2.2 数据可视化的意义 6
1.3 数据可视化的应用领域 9
1.3.1 在“工业4.0”中的应用 9
1.3.2 在智能交通中的应用 11
1.3.3 在新一代人工智能领域的应用 16
1.3.4 在其他领域的应用 16
1.4 与相关学科的关系 19
1.4.1 与计算机图形学的关系 20
1.4.2 与计算机视觉的关系 20
1.4.3 与计算仿真的关系 20
1.4.4 与人机交互的关系 21
1.4.5 与数据库的关系 21
1.4.6 与数据分析和数据挖掘的关系 21
习题 22
参考文献 23
第2章 可视化的类型与模型 24
2.1 可视化的类型 24
2.1.1 科学可视化 24
2.1.2 信息可视化 30
2.2 可视化的模型 39
2.2.1 顺序模型 39
2.2.2 分析模型 40
2.2.3 循环模型 41
习题 43
参考文献 43
第3章 数据可视化基础 45
3.1 光与视觉特性 45
3.1.1 光的特性 45
3.1.2 三基色原理 46
3.1.3 黑白视觉特性 47
3.1.4 彩色视觉特性 52
3.2 可视化的基本特征 55
3.3 可视化流程 56
3.3.1 可视化的基本步骤 56
3.3.2 可视化的一般流程 57
3.4 可视化设计组件 60
3.4.1 可视化设计模型 60
3.4.2 可视化设计原则 60
3.4.3 可视化的数据 61
3.4.4 可视化的原材料 62
3.4.5 可视化的基本图表 62
3.5 可视化中的美学因素 64
3.6 可视化框架设计整体思路 65
3.6.1 可视化框架的构成 66
3.6.2 数据图形映射的流程 66
习题 67
参考文献 68
第4章 数据可视化的常用方法 70
4.1 视觉编码 70
4.1.1 视觉感知 71
4.1.2 视觉通道 72
4.1.3 数据分类 73
4.1.4 常用的复杂数据处理方法 74
4.2 统计图表可视化方法 74
4.2.1 柱状图 75
4.2.2 条形图 77
4.2.3 折线图 78
4.2.4 饼图 79
4.2.5 散点图 79
4.2.6 气泡图 79
4.2.7 雷达图 80
4.3 图可视化方法 80
4.3.1 图的类型 80
4.3.2 图论可视化 81
4.3.3 思维导图 81
4.4 可视化分析方法的常用算法 83
4.4.1 可视化分析方法 84
4.4.2 可视分析研究的特点 85
4.4.3 可视分析的应用实例 86
4.4.4 主成分分析 88
4.4.5 聚类分析 90
4.4.6 因子分析 91
4.4.7 层次分析法 91
4.5 可视化方法的选择 92
4.5.1 百度地图开发 93
4.5.2 城市人流走势 93
4.5.3 商圈人流对比 94
4.5.4 D3.js和Echarts选择上的建议 94
4.5.5 优秀的数据可视化作品欣赏 94
习题 95
参考文献 95
第5章 大数据可视化的关键技术 97
5.1 大数据架构 97
5.1.1 系统协调者 100
5.1.2 数据提供者 100
5.1.3 大数据应用提供者 100
5.1.4 大数据框架提供者 102
5.1.5 数据消费者 103
5.1.6 安全和隐私 103
5.1.7 管理 103
5.2 大数据核心技术 104
5.2.1 数据收集 104
5.2.2 数据预处理 104
5.2.3 数据存储 105
5.2.4 数据处理 107
5.2.5 数据分析 108
5.2.6 数据治理 110
5.3 可视化关键技术 110
5.4 大数据可视化渲染 112
5.4.1 图像相关概念 112
5.4.2 渲染技术概述 114
5.4.3 基于CPU的渲染 115
5.4.4 基于GPU的渲染 116
5.4.5 集群渲染技术 118
5.4.6 云渲染 122
习题 123
参考文献 124
第6章 可视化交互 125
6.1 可视化交互方法分类 125
6.1.1 平移 缩放技术 126
6.1.2 动态过滤技术 127
6.1.3 概览 细节技术 128
6.1.4 焦点 上下文技术 129
6.1.5 多视图关联协调技术 130
6.2 可视化交互空间 131
6.2.1 可视化交互空间查询 131
6.2.2 可视化交互空间分析 132
6.2.3 交互空间分类 133
6.3 可视化交互模型 134
6.3.1 交互式信息可视化的用户界面模型 135
6.3.2 支持信息多面体可视分析界面模型(IMFA) 138
6.3.3 交互式可视化的关联规则挖掘模型 138
6.3.4 基于Web的交互式数据可视化模型 140
6.3.5 基于交互技术的知识可视化模型 142
6.4 交互硬件与软件 145
6.4.1 交互硬件 145
6.4.2 交互软件 147
6.4.3 交互系统 148
习题 151
参考文献 152
第7章 大数据可视化工具 153
7.1 Excel 153
7.1.1 Power Map简介 153
7.1.2 Power Map的使用 153
7.1.3 数据可视化示例 155
7.2 Processing 155
7.2.1 Processing开发环境简介 156
7.2.2 Processing绘制功能 156
7.2.3 Processing应用程序的结构 158
7.2.4 数据可视化举例 159
7.3 NodeXL 161
7.3.1 NodeXL简介 161
7.3.2 系统界面 162
7.3.3 数据获取与编辑 163
7.3.4 数据可视化 163
7.3.5 图形分析与数据过滤 164
7.4 ECharts 165
7.4.1 ECharts架构及特点 165
7.4.2 基本组成 166
7.4.3 引入ECharts 167
7.4.4 图表绘制 167
7.5 Tableau 174
7.5.1 Tableau简介 175
7.5.2 Tableau的使用 175
7.5.3 Tableau数据可视化实例 178
习题 181
参考文献 182
第8章 大数据可视化系统——魔镜 183
8.1 魔镜简介 183
8.2 系统架构与技术流程 184
8.3 数据处理与分析 185
8.4 数据可视化 188
习题 193
参考文献 193
第9章 大数据可视化的行业案例 194
9.1 电商行业销售数据分析 194
9.1.1 背景分析 194
9.1.2 需求分析 194
9.1.3 大数据分析过程 194
9.1.4 分析结论 202
9.2 广告投放效果分析 202
9.2.1 背景分析 202
9.2.2 需求分析 203
9.2.3 大数据分析过程 203
9.2.4 分析结论 208
9.3 金融行业贷款数据分析 209
9.3.1 背景分析 209
9.3.2 需求分析 209
9.3.3 大数据分析过程 209
9.4 能源行业油井数据分析 223
9.4.1 背景分析 223
9.4.2 需求分析 223
9.4.3 大数据分析过程 224
习题 236
参考文献
附录A
前 言
《大数据可视化》的特色。本书与国内外同类书比较,的特点是突出大数据可视化这一艺术与科技融合的特点,教材融合数字信号处理,人的视觉特性,可视分析学、大数据可视化渲染等基本理论,展示了大数据技术概貌,构建了大数据可视化的知识逻辑,同时强调实践,具有鲜明的理论与实践并重的特色。本书强调大数据可视化的基础性原理同时,融入真实案例分析,教材具有实用性,读者通过举一反三,真正学会大数据可视化的工具,运用大数据思维,解决工作中实际问题。把握大数可视化应用的趋势,教材强调多视图整合,强调所有数据视图交互联动,除了原有的饼状图、柱形图、热图、地理信息图等数据展现方式,还可以通过图像的颜色、亮度、大小、形状、运动趋势等多种方式在一系列图形中对数据进行分析,通过交互挖掘数据之间的关联,利用数据推动决策。
《大数据可视化》的教学建议。本书共9章,内容包括大数据可视化概述、可视化的类型与模型、数据可视化基础、数据可视化的常用方法、大数据可视化的关键技术、可视化交互、大数据可视化工具、大数据可视化系统——魔镜以及大数据可视化的行业案例内容。本书可作为大学本科计算机或相关专业的三、四年级学生的数据可视化课程的教材,建议课程总学时是48个(理论32个 实践16个)。具体分配方案是:第1章至第6章每章4个学时;第7章至第9章每章2个学时,加上16个学时实践环节。学期末的2个学时安排期末的大作业答辩。授课可采用多媒体投影教学方式,辅助以大量的案例分析、视频材料和互动演示。本书的附属资料(电子课件、作业、数据、在线资源、视频和图像)将实时更新。
《大数据可视化》的教学建议。本书共9章,内容包括大数据可视化概述、可视化的类型与模型、数据可视化基础、数据可视化的常用方法、大数据可视化的关键技术、可视化交互、大数据可视化工具、大数据可视化系统——魔镜以及大数据可视化的行业案例内容。本书可作为大学本科计算机或相关专业的三、四年级学生的数据可视化课程的教材,建议课程总学时是48个(理论32个 实践16个)。具体分配方案是:第1章至第6章每章4个学时;第7章至第9章每章2个学时,加上16个学时实践环节。学期末的2个学时安排期末的大作业答辩。授课可采用多媒体投影教学方式,辅助以大量的案例分析、视频材料和互动演示。本书的附属资料(电子课件、作业、数据、在线资源、视频和图像)将实时更新。
评论
还没有评论。