描述
开 本: 16开纸 张: 胶版纸包 装: 平装-胶订是否套装: 否国际标准书号ISBN: 9787121323751
编辑推荐
数据产品设计快速入门指南
详细介绍数据产品设计流程
内容简介
数据产品就是把数据、数据分析、决策逻辑尽可能多地固化到一个软件系统中, 以更快的更新频率、更准确的分析结果、更智能的提醒方式为人们提供数据价值。 《数据产品设计》是一本关于数据产品经理入门级的学习指南,主要内容包括初识数据产品、寻求需求领域、数据指标设计、数据可视化设计、数据展现逻辑设计、产品管理、常用工具软件。其中第1章从数据产品的定义、分类、职业规划等方面入手,讲解什么是数据产品、数据流通价值链、数据产品经理的职业规划等内容。第2章至第5章介绍了数据产品设计的一般流程。第6章介绍了一般产品经理需要具备的产品管理相关知识。第7章介绍了数据产品经理需要掌握的一些软件工具。《数据产品设计》定位为数据产品经理入门级的学习资料,适合初级学员阅读,对在职的数据产品经理可以作为一个补充性的学习资料。
目 录
第1章 初识数据产品 1
1.1 为什么需要数据产品 2
1.1.1 无处不在的决策 2
1.1.2 数据价值的提供方式 3
1.2 数据产品流通价值链 5
1.2.1 数据生产阶段 5
1.2.2 数据整理阶段 6
1.2.3 数据研究阶段 9
1.2.4 数据展现阶段 11
1.2.5 数据价值体现阶段 13
1.3 数据产品的定义及分类 14
1.3.1 辅助决策型数据产品 15
1.3.2 智能决策型数据产品 16
1.4 数据产品经理 20
1.4.1 招聘岗位分析 21
1.4.2 工作技能要求 23
1.4.3 职业转型方向 24
1.5 数据产品设计流程 25
第2章 寻找需求领域 29
2.1 需求理论 30
2.1.1 马斯洛的需求层次理论 30
2.1.2 乔布斯的用户需求理论 32
2.2 数据产品的需求领域 34
2.2.1 决策需求 34
2.2.2 数据需求 36
2.3 获得用户需求的方法 37
2.3.1 深入观察用户行为 37
2.3.2 定性的用户访谈记录 37
2.3.3 定量的用户调查数据 38
2.4 需求分析注意事项 38
2.4.1 合适的样本量 38
2.4.2 识别需求假象 39
2.4.3 专注于问题本身 40
2.4.4 对用户进行分类 41
第3章 数据指标设计 43
3.1 什么是数据指标 44
3.1.1 居民消费价格指数 44
3.1.2 洗车指数 46
3.2 数据指标分类 51
3.2.1 时间特点 52
3.2.2 总体特征性质 52
3.2.3 数据依据 53
3.2.4 计量单位的特点 54
3.2.5 指标属性 54
3.3 数据指标设计原则 55
3.3.1 可信的数据源 55
3.3.2 计算逻辑透明、清晰 55
3.3.3 考虑适用场景范围 56
3.3.4 有易理解的指导意见 56
3.4 数据指标体系设计 57
3.4.1 查阅罗列 58
3.4.2 分类设计 59
3.4.3 明确实现 61
第4章 数据可视化设计 63
4.1 可视化是人类的天性 64
4.2 数据可视化设计要素 65
4.2.1 设计目的 65
4.2.2 数据展现形式 66
4.2.3 受众群体 66
4.2.4 传播场景 68
4.3 趋势型数据可视化 68
4.3.1 点线图 68
4.3.2 拟合曲线图 71
4.3.3 柱状图 74
4.3.4 阶梯图 75
4.4 对比型数据可视化 76
4.4.1 柱状图 76
4.4.2 面积图 77
4.4.3 气泡图 78
3.3 数据指标设计原则 55
3.3.1 可信的数据源 55
3.3.2 计算逻辑透明、清晰 55
3.3.3 考虑适用场景范围 56
3.3.4 有易理解的指导意见 56
3.4 数据指标体系设计 57
3.4.1 查阅罗列 58
3.4.2 分类设计 59
3.4.3 明确实现 61
4.4.4 单词云图 79
4.4.5 星状图 80
4.4.6 脸谱图 82
4.4.7 热力图 83
4.5 比例型数据可视化 86
4.5.1 饼图 86
4.5.2 环形图 87
4.5.3 百分比堆砌柱状图 87
4.5.4 百分比堆砌面积图 88
4.6 分布型数据可视化 88
4.6.1 直方图 90
4.6.2 茎叶图 92
4.6.3 箱线图 93
4.6.4 概率密度图 95
4.7 关系型数据可视化 98
4.7.1 维恩图 98
4.7.2 矩形树图 99
4.7.3 漏斗图 102
4.7.4 桑基图 104
4.7.5 节点关系图 106
4.8 地理型数据可视化 108
4.8.1 二维地图 108
4.8.2 三维地图 111
4.8.3 地图应用 112
第5章 数据展现逻辑设计 117
5.1 时间逻辑 118
5.2 空间逻辑 121
5.3 用户角色逻辑 123
5.4 指标属性逻辑 125
5.5 业务分析流程逻辑 127
5.6 用户自定义逻辑 131
第6章 产品管理 133
6.1 产品经理管理职责 134
6.2 产品战略管理 135
6.3 产品需求管理 136
6.4 产品市场管理 139
6.5 产品研发管理 142
6.6 产品生命周期管理 146
6.7 产品经理管理考核 149
第7章 常用工具软件 151
7.1 需求分析工具 152
7.1.1 思维导图工具 152
7.1.2 问卷调查工具 157
7.2 数据探索工具 159
7.2.1 数据库管理工具 160
7.2.2 数据分析类工具 163
7.3 数据可视化工具 167
7.3.1 商业智能工具 168
7.3.2 前端图表插件 169
7.4 产品设计工具 171
7.4.1 流程图设计工具 172
7.4.2 原型图设计工具 177
结语 179
参考文献 181
1.1 为什么需要数据产品 2
1.1.1 无处不在的决策 2
1.1.2 数据价值的提供方式 3
1.2 数据产品流通价值链 5
1.2.1 数据生产阶段 5
1.2.2 数据整理阶段 6
1.2.3 数据研究阶段 9
1.2.4 数据展现阶段 11
1.2.5 数据价值体现阶段 13
1.3 数据产品的定义及分类 14
1.3.1 辅助决策型数据产品 15
1.3.2 智能决策型数据产品 16
1.4 数据产品经理 20
1.4.1 招聘岗位分析 21
1.4.2 工作技能要求 23
1.4.3 职业转型方向 24
1.5 数据产品设计流程 25
第2章 寻找需求领域 29
2.1 需求理论 30
2.1.1 马斯洛的需求层次理论 30
2.1.2 乔布斯的用户需求理论 32
2.2 数据产品的需求领域 34
2.2.1 决策需求 34
2.2.2 数据需求 36
2.3 获得用户需求的方法 37
2.3.1 深入观察用户行为 37
2.3.2 定性的用户访谈记录 37
2.3.3 定量的用户调查数据 38
2.4 需求分析注意事项 38
2.4.1 合适的样本量 38
2.4.2 识别需求假象 39
2.4.3 专注于问题本身 40
2.4.4 对用户进行分类 41
第3章 数据指标设计 43
3.1 什么是数据指标 44
3.1.1 居民消费价格指数 44
3.1.2 洗车指数 46
3.2 数据指标分类 51
3.2.1 时间特点 52
3.2.2 总体特征性质 52
3.2.3 数据依据 53
3.2.4 计量单位的特点 54
3.2.5 指标属性 54
3.3 数据指标设计原则 55
3.3.1 可信的数据源 55
3.3.2 计算逻辑透明、清晰 55
3.3.3 考虑适用场景范围 56
3.3.4 有易理解的指导意见 56
3.4 数据指标体系设计 57
3.4.1 查阅罗列 58
3.4.2 分类设计 59
3.4.3 明确实现 61
第4章 数据可视化设计 63
4.1 可视化是人类的天性 64
4.2 数据可视化设计要素 65
4.2.1 设计目的 65
4.2.2 数据展现形式 66
4.2.3 受众群体 66
4.2.4 传播场景 68
4.3 趋势型数据可视化 68
4.3.1 点线图 68
4.3.2 拟合曲线图 71
4.3.3 柱状图 74
4.3.4 阶梯图 75
4.4 对比型数据可视化 76
4.4.1 柱状图 76
4.4.2 面积图 77
4.4.3 气泡图 78
3.3 数据指标设计原则 55
3.3.1 可信的数据源 55
3.3.2 计算逻辑透明、清晰 55
3.3.3 考虑适用场景范围 56
3.3.4 有易理解的指导意见 56
3.4 数据指标体系设计 57
3.4.1 查阅罗列 58
3.4.2 分类设计 59
3.4.3 明确实现 61
4.4.4 单词云图 79
4.4.5 星状图 80
4.4.6 脸谱图 82
4.4.7 热力图 83
4.5 比例型数据可视化 86
4.5.1 饼图 86
4.5.2 环形图 87
4.5.3 百分比堆砌柱状图 87
4.5.4 百分比堆砌面积图 88
4.6 分布型数据可视化 88
4.6.1 直方图 90
4.6.2 茎叶图 92
4.6.3 箱线图 93
4.6.4 概率密度图 95
4.7 关系型数据可视化 98
4.7.1 维恩图 98
4.7.2 矩形树图 99
4.7.3 漏斗图 102
4.7.4 桑基图 104
4.7.5 节点关系图 106
4.8 地理型数据可视化 108
4.8.1 二维地图 108
4.8.2 三维地图 111
4.8.3 地图应用 112
第5章 数据展现逻辑设计 117
5.1 时间逻辑 118
5.2 空间逻辑 121
5.3 用户角色逻辑 123
5.4 指标属性逻辑 125
5.5 业务分析流程逻辑 127
5.6 用户自定义逻辑 131
第6章 产品管理 133
6.1 产品经理管理职责 134
6.2 产品战略管理 135
6.3 产品需求管理 136
6.4 产品市场管理 139
6.5 产品研发管理 142
6.6 产品生命周期管理 146
6.7 产品经理管理考核 149
第7章 常用工具软件 151
7.1 需求分析工具 152
7.1.1 思维导图工具 152
7.1.2 问卷调查工具 157
7.2 数据探索工具 159
7.2.1 数据库管理工具 160
7.2.2 数据分析类工具 163
7.3 数据可视化工具 167
7.3.1 商业智能工具 168
7.3.2 前端图表插件 169
7.4 产品设计工具 171
7.4.1 流程图设计工具 172
7.4.2 原型图设计工具 177
结语 179
参考文献 181
前 言
这是一本数据产品经理入门级的学习指南,市面上的产品经理相关书籍有很多,而针对数据产品经理这个更为狭窄的领域的书籍则比较少。本书定位为数据产品经理入门级的学习资料,适合初级学员阅读,对于在职的数据产品经理可以作为补充性学习资料。
本书第1章从数据产品的定义、分类、职业规划等方面入手,为读者讲解什么是数据产品、数据流通阶段、数据产品经理的职业规划等内容。读者可以从中对数据产品经理这一新兴岗位的基本情况有所了解,对该职业的知识框架有一定认识。第2章至第5章介绍了数据产品设计的一般流程,从需求分析到数据指标的设计,从数据图表的选择再到图表逻辑展现的设计,并对整个数据产品的生命周期管理进行了详细阐述。学习完这几章以后,读者能够了解辅助决策型数据产品的一般设计流程,以及能够熟练掌握每一种图表所能表达的含义,并将其灵活地应用到产品设计中。第6章介绍了一般产品经理需要具备的产品管理相关知识,有些内容是项目管理的相关知识,这些内容也是数据产品经理必须掌握的。在未来,随着使用数据产品的用户知识技能的提高,越来越多的数据产品将会提供更加灵活丰富的自定义功能,这更加需要数据产品经理具有数据产品设计基本知识。第7章介绍了数据产品经理需要掌握的一些软件工具。本章对软件工具只是进行了简要介绍,并没有深入讲解软件工具的使用方法,因为这方面的学习资料比较多,也不是一本书就可以全部讲完的,因此在本书中就点到为止,更深入的知识读者可查阅相关书籍进行进一步的学习。建议技术出身的数据产品经理可着重在产品设计软件的学习,而产品出身的数据产品经理可着重在数据分析、
处理软件的学习。
本书仅仅是入门级教材,要想成为一名优秀的数据产品经理还需要掌握更多的数据领域的相关知识。如果想进一步学习数据产品经理、算法工程师、数据分析师等数据相关岗位的视频课程,可在网易云课堂中搜索“艾数教育”。如果想探讨相关知识,可以联系笔者。
本书第1章从数据产品的定义、分类、职业规划等方面入手,为读者讲解什么是数据产品、数据流通阶段、数据产品经理的职业规划等内容。读者可以从中对数据产品经理这一新兴岗位的基本情况有所了解,对该职业的知识框架有一定认识。第2章至第5章介绍了数据产品设计的一般流程,从需求分析到数据指标的设计,从数据图表的选择再到图表逻辑展现的设计,并对整个数据产品的生命周期管理进行了详细阐述。学习完这几章以后,读者能够了解辅助决策型数据产品的一般设计流程,以及能够熟练掌握每一种图表所能表达的含义,并将其灵活地应用到产品设计中。第6章介绍了一般产品经理需要具备的产品管理相关知识,有些内容是项目管理的相关知识,这些内容也是数据产品经理必须掌握的。在未来,随着使用数据产品的用户知识技能的提高,越来越多的数据产品将会提供更加灵活丰富的自定义功能,这更加需要数据产品经理具有数据产品设计基本知识。第7章介绍了数据产品经理需要掌握的一些软件工具。本章对软件工具只是进行了简要介绍,并没有深入讲解软件工具的使用方法,因为这方面的学习资料比较多,也不是一本书就可以全部讲完的,因此在本书中就点到为止,更深入的知识读者可查阅相关书籍进行进一步的学习。建议技术出身的数据产品经理可着重在产品设计软件的学习,而产品出身的数据产品经理可着重在数据分析、
处理软件的学习。
本书仅仅是入门级教材,要想成为一名优秀的数据产品经理还需要掌握更多的数据领域的相关知识。如果想进一步学习数据产品经理、算法工程师、数据分析师等数据相关岗位的视频课程,可在网易云课堂中搜索“艾数教育”。如果想探讨相关知识,可以联系笔者。
评论
还没有评论。