描述
开 本: 16开纸 张: 胶版纸包 装: 平装-胶订是否套装: 否国际标准书号ISBN: 9787111521891丛书名: 21世纪高等院校电气信息类系列教材
配套资源:电子教案
本书特色:
★ 在作者多年的科研与教学实践基础上,吸取国内外多种人工智能教材的优点,反映人工智能领域在分布式人工智能、机器人、互联网智能和类脑智能等方面的先进水平。
★ 每章后面都附有一定数量的习题,为了加强课程的实践环节,书后列出了课程习题。
本书配套授课电子课件,需要的教师可登录www.cmpedu.com免费注册、审核通过后下载,或联系编辑索取(微信:15910938545 ,QQ:2681679180,email:[email protected],电话:010-88379739)另外,为方便任课教师进行交流,提供电气信息类教师QQ交流群: 33811098,欢迎加入!
本书系统地介绍了人工智能的基本原理、方法和应用技术,全面反映了国内外人工智能研究领域的进展和发展方向。全书共12章。第1章简要介绍了人工智能的概况。第2~6章阐述了人工智能的基本原理和方法,重点论述了知识表示、自动推理、机器学习和神经网络等。第7章和第8章介绍了专家系统、自然语言处理等应用技术。第9~11章阐述了当前人工智能的研究热点,包括分布式人工智能与智能体、智能机器人和互联网智能等。第12章探讨了类脑智能,展望人工智能的发展。
本书力求科学性、实用性和先进性,可读性好。内容由浅入深、循序渐进,条理清晰,让学生在有限的时间内掌握人工智能的基本原理与应用技术,提高对人工智能习题的求解能力。
本书可以作为高等院校计算机科学与技术、自动化等相关专业的研究生和高年级本科生的人工智能课程教材,也可以供从事人工智能研究与应用的科技人员学习参考。
出版说明
前言
第1章绪论
11什么是人工智能
12人工智能的起源与发展历史
13人工智能研究的基本内容
131认知建模
132知识表示
133自动推理
134机器学习
14人工智能研究的主要学派
141符号主义
142连接主义
143行为主义
15人工智能的应用
16小结和展望
习题
第2章知识表示
21概述
22谓词逻辑
23产生式系统
24语义网络
241语义网络的概念和结构
242复杂知识的表示
243常用的语义联系
25框架
251框架结构
252框架网络
253推理方法
26状态空间
27面向对象的知识表示
28脚本
281脚本描述
282概念依赖关系
29本体
210小结
习题
第3章自动推理
31概述
32三段论推理
33盲目搜索
331深度优先搜索
332宽度优先搜索
333迭代加深搜索
34回溯策略
35启发式搜索
351启发性信息和评估函数
352爬山算法
353模拟退火算法
354好优先算法
355通用图搜索算法
356A*算法
357迭代加深A*算法
36与或图启发式搜索
361问题归约的描述
362与或图表示
363AO*算法
37博弈搜索
371极大极小过程
372α–β过程
38归结演绎推理
381子句型
382置换和合一
383合一算法
384归结式
385归结反演
386答案的提取
387归结反演的搜索策略
39产生式系统
391产生式系统的基本结构
392正向推理
393反向推理
394混合推理
310自然演绎推理
311非单调推理
3111默认推理
3112限制推理
312小结
习题
第4章不确定性推理
41概述
411不确定性知识分类
412不确定性推理的基本问题
413不确定性推理方法分类
42可信度方法
421建造医学专家系统时的问题
422可信度模型
423确定性方法的说明
43主观贝叶斯方法
431贝叶斯公式
432知识不确定性的表示
433证据不确定性的表示
434组合证据不确定性的计算
435不确定性的传递算法
436结论不确定性的合成
44证据理论
441假设的不确定性
442证据的组合函数
443规则的不确定性
444不确定性的组合
45模糊逻辑和模糊推理
451模糊集合及其运算
452语言变量
453模糊逻辑
454模糊推理
46小结
习题
第5章机器学习
51机器学习概述
511简单的学习模型
512什么是机器学习
513机器学习的研究概况
52归纳学习
521归纳学习的基本概念
522变型空间学习
523决策树
53类比学习
531相似性
532转换类比
533基于案例的推理
534迁移学习
54统计学习
541逻辑回归
542支持向量机
543提升方法
55强化学习
551强化学习模型
552学习自动机
553自适应动态程序设计
554Q-学习
56进化计算
561达尔文进化算法
562遗传算法
563进化策略
564进化规划
57群体智能
571蚁群算法
572粒子群优化
58知识发现
59小结
习题
第6章神经网络
61概述
62神经信息处理的基本原理
人工智能是计算机科学的一个分支,是采用人工的方法和技术,通过研制智能机器或智能系统来模仿、延伸和扩展人的智能,实现智能行为。人工智能自1956年诞生以来,历经艰辛与坎坷,取得了举世瞩目的成就,特别是机器学习、数据挖掘、计算机视觉、专家系统、自然语言处理、模式识别、机器人等相关的应用带来了良好的经济效益和社会效益。广泛使用的互联网也正在探索应用知识表示和推理,构建语义Web, 提高互联网信息的效率。2015年7月4日,国务院发布《关于积极推进“互联网+”行动的指导意见》,明确未来三年以及十年的发展目标,提出包括“互联网+”创业创新、“互联网+”协同制造、“互联网+”现代农业、“互联网+”智慧能源、“互联网+”普惠金融、“互联网+”益民服务、“互联网+”高效物流、“互联网+”电子商务、“互联网+”便捷交通、“互联网+”绿色生态和“互联网+”人工智能11项重点行动,充分发挥智能科学与技术的作用,形成经济发展新动能,催生经济新格局。
人工智能的长期目标是建立达到人类智力水平的人工智能,智能科学指明了其实现的途径,发达国家都在积极开展探索。2013年1月28日,欧盟启动了旗舰“人类大脑计划”, 未来10年将投入10亿欧元的研发经费,目标是用超级计算机多段多层完全模拟人脑,帮助理解人脑功能。2013年4月2日,美国总统奥巴马宣布一项重大计划,将进行历时10年左右、总额10亿美元的研究计划——运用先进创新型神经技术的大脑研究BRAIN,目标是研究大脑中数十亿神经元的功能,探索人类感知、行为和意识,希望找出治疗阿尔茨海默氏症(老年痴呆症)等与大脑有关疾病的方法。我国也在积极酝酿开展类脑智能的研究。
数字化、网络化和智能化是信息社会发展的必然趋势,智能革命将开创人类后文明史。如果说蒸汽机创造了工业社会,那么智能机也一定能奇迹般地创造出智能社会,实现社会生产的自动化和智能化,促进知识密集型经济的大发展,在这方面人工智能将发挥重大作用。
本书是作者在多年的科研与教学实践基础上,吸取国内外多种人工智能教材的优点,参考国际上的研究成果编写而成,具有下列特点:
1)科学性。全面阐述人工智能的基础理论,力求概念正确,有效结合求解智能问题的数据结构以及实现的算法。
2)实用性。根据人工智能实际应用需求,安排知识表示、自动推理、机器学习、神经网络、专家系统和自然语言处理等内容,并通过大量的例题讲解解题方法。
3)先进性。尽可能吸收国际上的研究成果,反映人工智能领域在分布式人工智能、机器人、互联网智能和类脑智能等方面的水平。
4)可读性。文字表述力求通俗易懂,文笔流畅,使读者易于理解所学内容。在内容安排上力求由浅入深,循序渐进。
全书共12章。第1章简要介绍人工智能的基本概念、研究发展的状况以及各个学派的观点,并对其研究与应用领域进行了必要的讨论。第2章介绍基本的知识表示方法,包括产生式系统、语义网络、框架理论和状态空间,并介绍概念依赖、脚本和本体等方法。第3章讨论自动推理,对各种搜索技术、博弈问题、产生式系统、归结推理规则和归结原理,以及非单调推理等进行讨论。第4章是不确定性推理,讨论主观贝叶斯方法、确定性理论、证据理论,以及模糊逻辑和模糊推理等内容。第5章是机器学习,介绍归纳学习、ID3算法、类比学习、统计学习和SVM、强化学习、进化计算和群体智能等。第6章讨论神经网络,重点介绍感知机、前馈神经网络、Hopfield网络、随机神经网络、深度学习和自组织神经网络。第7章介绍专家系统,主要介绍专家系统的基本原理、典型的专家系统和开发工具。第8章是自然语言处理,主要阐述自然语言词法、句法、语义分析、真实文本语料库和语用分析等方面,介绍自然语言处理所涉及的关键技术。第9章讨论智能体技术的重要概念和关键技术。第10章论述智能机器人,探讨智能机器人的体系结构、视觉系统、自动规划,列举智能机器人的重要应用。第11章是互联网智能,介绍语义Web、本体知识管理、Web技术、Web挖掘、搜索引擎和集体智能等。后一章探讨类脑智能,展望类脑智能发展的路线图。
在本书的每章后面都附有一定数量的习题,以巩固所学知识。为了加强课程的实践环节,书后列出了课程习题,使读者能够应用所学内容解决实际问题。在后列出了参考文献,读者可以从中得到进一步的学习。
本书内容力求做到由浅入深、循序渐进、条理清晰、前后一致,既强调基本原理和工程应用,又要反映国内外研究和应用的进展,具有科学性、先进性和实用性。本书包含了作者多年的科研和教学实践,也吸取了国内外同类教材和有关文献的精华,在此谨向这些教材和文献的作者表示感谢,也向提供帮助的许多老师和学生表示感谢。
本书研究工作得到国家重点基础研究发展计划(973)“脑机协同的认知计算模型”(项目编号:2013CB329502)、国家自然科学基金重点项目“基于云计算的海量数据挖掘”(批准号:61035003)、国家科技支撑项目“颌面部组织缺损和畸形重建相关技术研究” (批准号:2012BA107B02)等的支持。在本书编写和出版过程中,得到了机械工业出版社的大力支持,在此谨表诚挚的谢意。
本书可以作为高等院校计算机科学与技术、自动化等相关专业的研究生和高年级本科生的人工智能课程教材,也可以供从事人工智能研究与应用的科技人员学习参考。在教学过程中老师可以根据实际需要对内容进行取舍。
由于作者水平有限,加之人工智能发展迅速,书中不妥和错误之处在所难免,诚恳地希望专家和读者提出宝贵意见,以帮助本书改进和完善。
评论
还没有评论。