fbpx

[email protected]

购物车

 查看订单

  • 我的帐户
东东购 | EasternEast
  • 中文书店
    • 畅销排行榜
      • 小说 畅销榜
      • 童书 畅销榜
      • 外语畅销榜
      • 管理畅销榜
      • 法律畅销榜
      • 青春文学畅销榜
    • 热门分类
      • 社会小说
      • 成功/励志 畅销榜
      • 人物传记
      • 大陆原创
      • 绘本童书
      • 影视小说
    • 文学推荐
      • 文集
      • 戏剧
      • 纪实文学
      • 名家作品
      • 民间文学
      • 中国现当代随笔
    • 新书热卖榜
      • 小说 新书热卖榜
      • 青春文学 新书热卖榜
      • 童书 新书热卖榜
      • 管理 新书热卖榜
      • 成功/励志 新书热卖榜
      • 艺术 新书热卖榜
  • 精选分类
    • 小说
    • 保健养生
    • 烹饪/美食
    • 风水/占卜
    • 青春文学
    • 童书
    • 管理
    • 成功/励志
    • 文学
    • 哲学/宗教
    • 传记
    • 投资理财
    • 亲子家教
    • 动漫/幽默
    • 法律 Legal
    • 经济 Economics
    • 所有分类
  • 关于东东
  • 帮我找书
搜索
首页自然科学物理学凝聚环和FP-内射环(英文版)

凝聚环和FP-内射环(英文版)

作者:陈建龙,张小向 著 出版社:科学出版社 出版时间:2014年12月 

ISBN: 9787030424105
年中特卖用“SALE15”折扣卷全场书籍85折!可与三本88折,六本78折的优惠叠加计算!全球包邮!
trust badge

EUR €58.99

类别: 物理学 SKU:5d85ae3b5f98494bcc1269ba 库存: 有现货
  • 描述
  • 评论( 0 )

描述

开 本: 16开纸 张: 胶版纸包 装: 平装是否套装: 否国际标准书号ISBN: 9787030424105

内容简介
  凝聚环源于Chase[45]在1960年对平坦模的直积的研究。这一概念可以看成Noether环和半遗传环的推广。1989年,Glaz编著的《交换的凝聚环》[160]一书出版了。这本由陈建龙、张小向著的《凝聚环与FP-内射环(英文版)》综合了当时人们所知道的有关交换的凝聚环方面的几乎所有的结果。
  三年以后,Glaz又写了一篇关于交换的凝聚环的综述报告,介绍了凝聚环在交换代数中的地位。与此同时,关于非交换的凝聚环的研究也逐渐活跃起来。这正是本书的所要着重讨论的内容之一。
目  录
Preface
Notations
Chapter 1  A glance in rings and modules
  1.1  Rings and modules
  1.2  Complexes, homological dimensions and functors
  1.3  Finitely generated and finitely presented modules
  1.4  FP-injective and flat modules
  Exercise
Chapter 2  Coherent rings
  2.1  Definition and examples
  2.2  Characterizations of coherent rings
  2.3  Extensions of coherent rings
  2.4  Some generalizations
  Exercise
Chapter 3  FP-injective rings
  3.1  Definition and examples
  3.2  Characterizations of FP-injective rings
  3.3  Extensions of FP-injective rings
  3.4  FP-injective and QF rings
  3.5  FC rings
  Exercise
Chapter 4  Homological dimensions
  4.1  FP-injective dimension
  4.2  n-FC rings
  4.3  Weak global dimension
  4.4  Semihereditary rings
  Exercise
Chapter 5  Some applications
  5.1  Flat envelopes and FP-injective covers
  5.2  Gorenstein flat modules
  5.3  Gorenstein FP-injective modules
  5.4  Gorenstein flat complexes
  5.5  Gorenstein FP-injective complexes
  5.6  Relative and Tate homology
  Exercise
Appendix A  Open questions
Appendix B  Categories and fuctors
Appendix C  Categories of complexes of modules
References
Index
在线试读
Chapter 1 A glance in rings and modules
In this preliminary chapter, we brie.y present some fundamental notions and related results which will be frequently used in the sequel.
1.1 Rings and modules
Modern ring theory rose from early 1900s. As a common generalization of some “concrete” algebraic structures with operations generalizing the arithmetic opera-tions of addition and multiplication, the notion of rings is widely involved in many branches of mathematics. One e.cient approach to investigate a ring, among others, is to study modules over it.
We assume that the reader has been acquainted with monoids and (abelian) groups.
1.1.1 Rings, homomorphisms and ideals
De.nition 1.1.1 Let R be a nonempty set with two binary operations, addition (+) and multiplication (·), such that (R, +) is an abelian group and (R, ·) is a monoid. As usual, the zero element of (R, +) is written as 0, while the identity element of (R, ·) is denoted by 1. The system (R, +, ·, 0, 1) is called an associative ring if the multiplication is distributive over the addition, i.e.,
a · (b + c)= a · b + a · c and (b + c) · a = b · a + c · a
for all a, b, c ∈ R.
Given a ring (R, +, ·, 0, 1) and a subset S of R, if 0, 1 ∈ S and (S, +, ·, 0, 1) is also a ring then we say (S, +, ·, 0, 1) is a subring of R.
We usually abbreviate (R, +, ·, 0, 1) to R and write a · b as ab in R if it does not cause any confusion. The element 1 is called the identity of R. Sometimes we use 1R to emphasize the identity 1 in a ring R especially in case there are more than one ring involved at the same time.
A ring R is said to be commutative provided (R, ·, 1) is a commutative monoid.
By a division ring we mean a ring R in which every nonzero element a is invertible in the sense that ab = ba = 1 for some b ∈ R. It is easy to see that such an element
.1
b is unique if it exists. In this case, we write b = aand call it the inverse of a. An invertible element in a ring is also called a unit.
If R is a ring in which ab 0 for all nonzero elements a and b, then we say
= R is a domain. A commutative domain is also known as an integral domain.A commutative division ring is called a .eld.
Example 1.1.2 Typical examples of commutative rings include Z, Q, R and C. In addition, let R[x] be the set of all polynomials in x with real coe.cients. Then R[x] is also a commutative ring with the usual addition and multiplication of polynomials. All these ring are integral domains. In particular, Q, R and C are .elds.
Example 1.1.3 In linear algebra, we encounter noncommutative rings. For in-stance, let Mn(R) be the set of all n × n matrices over R, where n is an integer greater than 1. Then Mn(R) is a noncommutative ring with the usual addition and multiplication of matrices.
The notion of matrix rings can be generalized to de.ne rings of some in.nite matrices as follows.
Let Γ be an in.nite set and f :Γ × Γ → R be a map, where R is a ring. Suppose f(α, β)= aαβ for each (α, β) ∈ Γ × Γ. Then we may write f in a matrix form
[aαβ]Γ×Γ (or simply [aαβ])
and call it a Γ × Γ matrix over R. The set of all Γ × Γ matrices over R shall be denoted by MΓ(R). Then for any f =[aαβ ] and g =[bαβ] ∈ MΓ(R) we shall de.ne the sum of f and g as usual. Thus
[aαβ]+[bαβ]=[cαβ],
where cαβ = f(α, β)+ g(α, β). But the usual product of matrices in Mn(R) is not always adaptable for matrices in MΓ(R). And associativity (xy)z = x(yz) can fail for in.nite matrices x, y, z even when all products concerned make sense. For instance, let
. 0 0 00 ··· .
.111 ··· .. 1 .100 ··· .
.1 0 00 ···
011 ··· 01 .10 ···
.1 .1 00 ···
x = ,y = ,z =
001 ··· 001 .1 ···
.
.
.
.
.1 .1 .10 ···
… ….
. … .. …. ..
.

. . ..
… …. ..
. . ..
. . ..
and adopt the usual product of matrices formally, then we have xy =1= yx and yz = 1 but x
= z [38, Example 3]. Fortunately, MΓ(R) has some subsets in which the usual product of matrices is adaptable.
Example 1.1.4 By a row .nite matrix in MΓ(R) we mean a matrix [aαβ] ∈ MΓ(R) such that, for each α ∈ Γ, there are at most .nitely many β with aαβ = 0. A matrix [aαβ] is said to be column .nite provided the transpose of [aαβ] (denoted by [aαβ]T) is row .nite. Now let A =[aαβ] and B =[bαβ] be two row .nite matrices in MΓ(R). We can de.ne the product of A and B as usual, that is, AB =[cαβ], where cαβ =三γ∈Γ aαγ bγβ . Thus, RFMΓ(R), the set of all row .nite matrices in MΓ(R) becomes a ring with respect to the operations de.ned above. Similarly, the column .nite matrices in MΓ(R) form a ring, which shall be denoted by CFMΓ(R).
Example 1.1.5 The best known example of a noncommutative division ring is
H = {a + bi + cj + dk | a, b, c, d ∈ R},
the ring of quaternions .rst described by the Irish mathematician William Rowan Hamilton in 1843. The addition in H is similar to that in C. More precisely, the sum of a+bi+cj+dk and a’ +b’i+c’j+d’k is (a+a’)+(b+b’)i+(c+c’)j+(d+d’)k. The multiplication in H is determined by the distributive law and the products of the base eleme

抢先评论了 “凝聚环和FP-内射环(英文版)” 取消回复

评论

还没有评论。

相关产品

阅读更多
缺货

电磁通论

EUR €53.99
加入购物车

物理学大辞典

EUR €155.99
加入购物车

新千年版 费恩曼物理学讲义(第2卷)

EUR €68.98
加入购物车

热力学

EUR €23.99

东东购的宗旨是服务喜爱阅读中文书籍的海外人民,提供一个完善的购书平台,让国人不论何时何地都能沉浸在书香之中,读着熟悉的中文字,回忆着家乡的味道。


安全加密结账 安心网络购物 支持Paypal付款

常见问题

  • 货物配送
  • 退换货政策
  • 隐私政策
  • 联盟营销

客户服务

  • 联系东东
  • 关于东东
  • 帮我找书
  • 货物追踪
  • 会员登入

订阅最新的优惠讯息和书籍资讯

选择币别

EUR
USD
CAD
AUD
NZD
NOK
GBP
CHF
SEK
CNY
UAH
ILS
SAR
MXN
KRW
MYR
SGD
HUF
TRY
JPY
HKD
TWD
facebookinstagram
©2020 东东购 EasternEast.com

限时特卖:用“SALE15”优惠券全场书籍85折!可与三本88折,六本78折的优惠叠加计算。 忽略