描述
开 本: 16开纸 张: 胶版纸包 装: 精装是否套装: 否国际标准书号ISBN: 9787040250619
内容简介
Dynamics of Surface Waves in Coastal Waters Wave-Current-Bottom Interactions develops the typical basic theories (e,g. mild-slope equation and shorecrested waves) and applications of water wave propagation with an emphasis on wave-current-bottom interactions and Hamiltonian systems. In recent times, the interest in water wave propagation has accelerated because of rapid developments in global coastal ocean engineering.
目 录
1 Preliminaries
1.1 Water Wave Theories in Historical Perspective
1.1.1 The Mild-Slope Equations
1.1.2 The Boussinesq-Type Equations
1.2 The Governing Equations
1.3 Lagrangian Formulation
1.4 Hamiltonian Formulation
References
2 Weakly Nonlinear Water Waves Propagating over Uneven Bottoms
2.1 Modified Third-Order Evolution Equations of Liu and Dingemans
2.2 Fourth-Order Evolution Equations and Stability Analysis
2.3 Third-Order Evolution Equations for Wave-Current Interactions
References
3 Resonant Interactions Between Weakly Nonlinear Stokes Waves and Ambient Currents and Uneven Bottoms
3.1 Introduction
3.2 Governing Equations and WKBJ Perturbation Expansion
3.3 Subharmonic Resonance
3.4 Dynamical System
References
4 The Mild-Slope Equations
4.1 Introduction
4.2 Three-Dimensional Currents over Mildly Varying Topography
4.3 Two-Dimensional Currents over Rapidly Varying Topography
4.4 Three-Dimensional Currents over Rapidly Varying Topography
4.5 Two-Dimensional Currents over Generally Varying Topography
4.6 A Hierarchy for Two-Dimensional Currents over Generally Varying Topography
References
5 Linear Gravity Waves over Rigid, Porous Bottoms
5.1 Introduction
5.2 A Rapidly Varying Bottom
5.3 Generally Varying Bottom
References
6 Nonlinear Unified Equations over an Uneven Bottom
6.1 Introduction
6.2 Nonlinear Unified Equations
6.3 Explicit Special Cases
6.3.1 Generalized Nonlinear Shallow-Water Equations of Airy
6.3.2 Generalized Mild-Slope Equation
6.3.3 Stokes Wave Theory
6.3.4 Higher-Order Boussinesq-Type Equations
References
7 Generalized Mean-Flow Theory
7.1 Introduction
7.2 Governing Equations and Boundary Conditions
7.3 Averaged Equations of Motion
7.4 Generalized Wave Action Conservation Equation and Its Wave Actions
References
8 Hamiltonian Description of Stratified Wave-Current Interactions
8.1 Introduction
8.2 Two-Layer Wave-Current Interactions
8.3 n-Layer Pure Waves
8.4 n-Layer Wave-Current Interactions over Uneven Bottoms
References
9 Surface Capillary-Gravity Short-Crested Waves with a Current in Water of Finite Depth
9.1 Introduction
9.2 An Incomplete Match and Its Solution
9.3 Linear Capillary-Gravity Short-Crested Waves
9.3.1 System Formulation
9.3.2 Analytical Solutions and Kinematic and Dynamical Variables
9.3.3 Special Cases
9.4 Second-Order Capillary-Gravity Short-Crested Waves
9.5 Third-Order Gravity Short-Crested Waves
9.5.1 The System Equations and the Perturbation Method
9.5.2 Third-Order Solution
9.5.3 Special Cases
9.5.4 Short-Crested Wave Quantities
9.5.5 Short-Crested Wave Forces on Vertical Walls
9.6 Third-Order Pure Capillary-Gravity Short-Crested Waves
9.6.1 Formulation
9.6.2 Solution
9.6.3 Kinematical and Dynamical Variables
References
Appendices
A γ,μ and v in (2.1.4)
B ξ(3,1), φ3,1), A(3,2)’ ηj, τj, μj, λj and Vj in Chapter 2
C λ1 and λ2 in (2.3.44)
D μj in (3.3.22)
E I23, I33, I35,136 in Chapter 5
F Coefficients in (9.4.33) and (9.4.34)
G Coefficients in (9.5.136)-(9.5.138)
H Coefficients in (9.5.139) and (9.5.140)
Subject Index
1.1 Water Wave Theories in Historical Perspective
1.1.1 The Mild-Slope Equations
1.1.2 The Boussinesq-Type Equations
1.2 The Governing Equations
1.3 Lagrangian Formulation
1.4 Hamiltonian Formulation
References
2 Weakly Nonlinear Water Waves Propagating over Uneven Bottoms
2.1 Modified Third-Order Evolution Equations of Liu and Dingemans
2.2 Fourth-Order Evolution Equations and Stability Analysis
2.3 Third-Order Evolution Equations for Wave-Current Interactions
References
3 Resonant Interactions Between Weakly Nonlinear Stokes Waves and Ambient Currents and Uneven Bottoms
3.1 Introduction
3.2 Governing Equations and WKBJ Perturbation Expansion
3.3 Subharmonic Resonance
3.4 Dynamical System
References
4 The Mild-Slope Equations
4.1 Introduction
4.2 Three-Dimensional Currents over Mildly Varying Topography
4.3 Two-Dimensional Currents over Rapidly Varying Topography
4.4 Three-Dimensional Currents over Rapidly Varying Topography
4.5 Two-Dimensional Currents over Generally Varying Topography
4.6 A Hierarchy for Two-Dimensional Currents over Generally Varying Topography
References
5 Linear Gravity Waves over Rigid, Porous Bottoms
5.1 Introduction
5.2 A Rapidly Varying Bottom
5.3 Generally Varying Bottom
References
6 Nonlinear Unified Equations over an Uneven Bottom
6.1 Introduction
6.2 Nonlinear Unified Equations
6.3 Explicit Special Cases
6.3.1 Generalized Nonlinear Shallow-Water Equations of Airy
6.3.2 Generalized Mild-Slope Equation
6.3.3 Stokes Wave Theory
6.3.4 Higher-Order Boussinesq-Type Equations
References
7 Generalized Mean-Flow Theory
7.1 Introduction
7.2 Governing Equations and Boundary Conditions
7.3 Averaged Equations of Motion
7.4 Generalized Wave Action Conservation Equation and Its Wave Actions
References
8 Hamiltonian Description of Stratified Wave-Current Interactions
8.1 Introduction
8.2 Two-Layer Wave-Current Interactions
8.3 n-Layer Pure Waves
8.4 n-Layer Wave-Current Interactions over Uneven Bottoms
References
9 Surface Capillary-Gravity Short-Crested Waves with a Current in Water of Finite Depth
9.1 Introduction
9.2 An Incomplete Match and Its Solution
9.3 Linear Capillary-Gravity Short-Crested Waves
9.3.1 System Formulation
9.3.2 Analytical Solutions and Kinematic and Dynamical Variables
9.3.3 Special Cases
9.4 Second-Order Capillary-Gravity Short-Crested Waves
9.5 Third-Order Gravity Short-Crested Waves
9.5.1 The System Equations and the Perturbation Method
9.5.2 Third-Order Solution
9.5.3 Special Cases
9.5.4 Short-Crested Wave Quantities
9.5.5 Short-Crested Wave Forces on Vertical Walls
9.6 Third-Order Pure Capillary-Gravity Short-Crested Waves
9.6.1 Formulation
9.6.2 Solution
9.6.3 Kinematical and Dynamical Variables
References
Appendices
A γ,μ and v in (2.1.4)
B ξ(3,1), φ3,1), A(3,2)’ ηj, τj, μj, λj and Vj in Chapter 2
C λ1 and λ2 in (2.3.44)
D μj in (3.3.22)
E I23, I33, I35,136 in Chapter 5
F Coefficients in (9.4.33) and (9.4.34)
G Coefficients in (9.5.136)-(9.5.138)
H Coefficients in (9.5.139) and (9.5.140)
Subject Index
评论
还没有评论。