描述
开 本: 24开纸 张: 胶版纸包 装: 平装是否套装: 否国际标准书号ISBN: 9787510070303
内容简介
《流形上的层》编著者柏原正树。 层论是代数拓扑、代数几何和偏微分方程的交叉形成得一个很现代,很活跃的领域。《流形上的层(英文版)》从层论的基础讲起,强调微局部观点。包括了许多有趣的观点,写作风格清晰明了,将数学的这个全新,庞大的分支展现给读者。
目 录
Introduction
A Short History: Les Debuts De La Theorie des Faheeaux By Christian Houzel
1. Homologieal Algebra
Summary
1.1. Categories and Functors
1.2. Abelian Categories
1.3. Categories of Complexes
1.4. Mapping Cones
1.5. Triangulated Categories
1.6. Localization of Categories
1.7. Derived Categories
1.8. Derived Functors
1.9. Double Complexes
1.10. Bifunctors
1.11. Ind-Objects And Pro-Objects
1.12. The Mittag-Leffler Condition
Exercises To Chapter I
Notes
A Short History: Les Debuts De La Theorie des Faheeaux By Christian Houzel
1. Homologieal Algebra
Summary
1.1. Categories and Functors
1.2. Abelian Categories
1.3. Categories of Complexes
1.4. Mapping Cones
1.5. Triangulated Categories
1.6. Localization of Categories
1.7. Derived Categories
1.8. Derived Functors
1.9. Double Complexes
1.10. Bifunctors
1.11. Ind-Objects And Pro-Objects
1.12. The Mittag-Leffler Condition
Exercises To Chapter I
Notes
Ⅱ.Sheaves
Summary
2.1. Presheaves
2.2. Sheaves
2.3. Operations on Sheaves
2.4. Injective, Flabby and Flat Sheaves
2.5. Sheaves on Locally Compact Spaces
2.6. Cohomology of Sheaves
2.7. Some Vanishing Theorems
2.8. Cohomology of Coverings
2.9. Examples of Sheaves on Real and Complex Manifolds
……
Ⅲ. poincare. verdier duality and fourier-sato transformation
Ⅳ. specialization and microlocalization
Ⅴ. micro-support of sheaves
Ⅵ. micro-support and microlocalization
Ⅶ. contact transformations and pure sheaves
Ⅷ. constructible sheaves
Ⅸ. characteristic cycles
Ⅹ. perverse sheaves
Ⅺ. applications to θ-modules and d-modules
评论
还没有评论。