描述
开 本: 大32开纸 张: 胶版纸包 装: 平装是否套装: 否国际标准书号ISBN: 9787301230602丛书名: 21世纪数学规划教材·数学基础课系列
《点集拓扑与代数拓扑引论》是作者结合科研工作和多年教学经验编著的一本拓扑学方面的入门教材,有两大特点:
1、综合介绍了点集拓扑的主要内容和代数拓扑的入门知识,使得学生在学完之后能对现代拓扑学的全貌有一个初步的了解。
2、采用了类似于课堂讨论的讲述风格,条理清晰而又浅显易懂,并且提供了丰富具体的例子以及难度适中的配套习题,并附有习题答案。
本书可作为综合大学和高等师范院校数学系的拓扑课教材,也可供有关的科技人员和拓扑学爱好者作为自学的入门读物。
本书可作为综合大学、高等师范院校数学系的拓扑课教材,也可供有关的科技人员和拓扑学爱好者作为课外学习的入门读物。
引言
拓扑学的直观认识
预备知识.
集合论的公理系统
第一章拓扑空间与连续性
1.1拓扑空间
1.2拓扑空间中的一些基本概念
1.3集合的基数和可数集
1.4连续映射与同胚
1.5乘积空间
1.6予空间
1.7商映射与商空间
1.8商空间的更多例子
第二章常用点集拓扑性质
2.1可数公理
2.2分离公理
2.3 Urysohn度量化定理
2.4连通性
2.5道路连通性
2.6紧致性
……
第五章 复迭空间
引 言
什么是拓扑?
在数学家的圈子以外,当被问到拓扑一词时,人们最有可能想到的,大概是计算机科学中提到的“拓扑”概念:当我们把许多计算机相互连接在一起构成网络时,会有很多种不同的连接方式,小到可以是一台服务器挂很多客户端的集中式网络,大到可以是很多子网络通过路由器连接在一起的网际网络,这些连接方式都被叫做网络拓扑.虽然计算机的型号性能和网络连接的速度质量可能有千差万别,但是当网络拓扑相同时,网络运行的基本原理和算法是相通的.反过来当网络拓扑不同时,计算机之间搜索位置和传送信息的方法则往往会有本质差别.
其实这个概念是从数学中借用过去的,不过在一定程度上,这种借用确实反映了拓扑学中一些最朴素最直观的想法.数学家发明拓扑的初衷,正是要去寻找这样的一些几何形状上的特征,它们虽然也都看得见摸得着,但是却比长度和角度等传统几何性质更加“本质”:这些特征不会因为研究对象的某些细节上的改变而发生改变.一个通俗(但是并不准确)的说法是:拓扑学研究的是一个对象在连续形变下保持不变的性质.
这种性质有吗?当然有.早在1736年,Euler(欧拉)解决K?nigsberg(哥尼斯堡)七桥问题的时候,就发现了一些这样的奇妙性质,并认为应该有一种“关于相对位置的几何”来专门研究此类古典几何无法解释的奇妙性质.这就是拓扑学的起源.Euler称“位置几何”这个词源于Leibniz(莱布尼茨).近年来人们对数学史的研究发现,Leibniz的想法可能来源于比他更早的Descartes(笛卡尔)的一篇未发表的手稿.
评论
还没有评论。