描述
开 本: 16开纸 张: 胶版纸包 装: 平装-胶订是否套装: 否国际标准书号ISBN: 9787111575788丛书名: 大数据管理丛书
编辑推荐
内容简介
本书立足于大数据背景,深入探讨了学术界的数据现状,并详细阐释了数据与学术之间的复杂关系。书中首先通过确定调查研究的前提——六项“挑战”——来吸引读者对学术数据的兴趣,然后就自然科学、社会科学和人文学科三个领域中的数据实践进行案例分析,后阐述其研究成果对学术实践和研究政策的推动意义。作者提出,要实现长期的数据管理和挖掘,就要对知识基础设施进行大量投资,这对学术研究的未来至关重要。本书适合相关学者、研究人员、高校领导、出版商、图书馆和数据档案馆的工作人员以及投资决策者和政策制定者阅读。
目 录
目 录
丛书前言
译者序
前言
致谢
作者简介
推荐语
部分 数据与学术
第1章 挑战2
1.1 引言2
1.2 大数据与小数据3
1.2.1 大4
1.2.2 开放性5
1.2.3 长尾6
1.3 无数据8
1.3.1 数据不可获取8
1.3.2 数据不可发布9
1.3.3 数据不可用10
1.4 六项挑战11
1.5 结论12
第2章 何为数据13
2.1 引言13
2.2 定义与术语14
2.2.1 按例定义15
2.2.2 操作定义16
2.2.3 分类定义17
2.2.4 概念区分21
2.3 结论23
第3章 数据学术25
3.1 引言25
3.2 知识基础设施26
3.3 社会与技术28
3.3.1 社区与协作29
3.3.2 知识与表示30
3.3.3 理论、实践与政策31
3.4 开放学术32
3.4.1 开放获取研究成果32
3.4.2 开放获取数据34
3.4.3 开放技术37
3.5 交流融合38
3.5.1 数据隐喻38
3.5.2 数据单元40
3.5.3 记录文件42
3.6 结论43
第4章 数据多样性44
4.1 引言44
4.2 学科与数据45
4.3 数据大小问题46
4.3.1 项目目标47
4.3.2 数据采集48
4.3.3 数据分析49
4.4 数据产生问题50
4.4.1 距离问题51
4.4.2 外部影响因素57
4.5 结论64
第二部分 数据学术案例研究
第5章 自然科学领域的数据学术66
5.1 引言66
5.1.1 研究方法与数据实践66
5.1.2 自然科学案例67
5.2 天文学68
5.2.1 数据大小问题69
5.2.2 数据产生问题72
5.2.3 天文学研究实践82
5.3 传感器网络科学与技术85
5.3.1 数据大小问题86
5.3.2 数据产生问题87
5.3.3 嵌入式传感器网络研究实践93
5.4 结论98
第6章 社会科学领域的数据学术100
6.1 引言100
6.1.1 研究方法与数据实践101
6.1.2 社会科学案例102
6.2 互联网调查与社交媒体研究102
6.2.1 数据大小问题103
6.2.2 数据产生问题104
6.2.3 互联网调查与社交媒体研究实践110
6.3 社会技术研究115
6.3.1 数据大小问题115
6.3.2 数据产生问题116
6.3.3 CENS的社会技术研究实践120
6.4 结论126
第7章 人文学科领域的数据学术129
7.1 引言129
7.1.1 研究方法与数据实践130
7.1.2 人文学科案例131
7.2 古典艺术与考古学132
7.2.1 数据大小问题133
7.2.2 数据产生问题133
7.2.3 古典艺术与考古学研究实践144
7.3 佛教研究150
7.3.1 数据大小问题151
7.3.2 数据产生问题151
7.3.3 佛教研究实践156
7.4 结论161
第三部分 数据政策与实践
第8章 数据共享、发布与重用166
8.1 引言166
8.2 研究类数据的供求分析168
8.2.1 研究类数据的供给分析169
8.2.2 研究类数据的需求分析173
8.3 学术动机174
8.3.1 出版物与数据174
8.3.2 数据资产与数据债务177
8.3.3 数据发布178
8.3.4 获取重用数据181
8.4 知识基础设施183
8.4.1 知识库、数据集与档案馆183
8.4.2 个体数据实践185
8.4.3 人力基础设施186
8.4.4 棘手问题187
8.5 各学科领域的知识基础设施187
8.5.1 自然科学188
8.5.2 社会科学192
8.5.3 人文学科193
8.6 结论194
第9章 数据信誉、归属与发现197
9.1 引言197
9.2 原则与问题199
9.3 理论与实践200
9.3.1 内容与格式:如何引用201
9.3.2 引用行为理论:何时、为何引用何种对象203
9.3.3 明确与否:信誉授予对象与责任归属对象206
9.3.4 名称或编号:身份问题211
9.3.5 当理论遇到技术:引用行为218
9.3.6 风险与回报:引用价值219
9.4 结论221
第10章 保存何种数据及其原因223
10.1 引言223
10.2 挑战回顾225
10.2.1 数据权利、责任、角色和风险 225
10.2.2 数据共享227
10.2.3 出版物与数据229
10.2.4 数据获取232
10.2.5 利益相关者及其技能233
10.2.6 过去、现在和未来的知识基础设施235
10.3 结论237
术语表238
人名表251
机构、书籍和项目名称表258
参考文献
丛书前言
译者序
前言
致谢
作者简介
推荐语
部分 数据与学术
第1章 挑战2
1.1 引言2
1.2 大数据与小数据3
1.2.1 大4
1.2.2 开放性5
1.2.3 长尾6
1.3 无数据8
1.3.1 数据不可获取8
1.3.2 数据不可发布9
1.3.3 数据不可用10
1.4 六项挑战11
1.5 结论12
第2章 何为数据13
2.1 引言13
2.2 定义与术语14
2.2.1 按例定义15
2.2.2 操作定义16
2.2.3 分类定义17
2.2.4 概念区分21
2.3 结论23
第3章 数据学术25
3.1 引言25
3.2 知识基础设施26
3.3 社会与技术28
3.3.1 社区与协作29
3.3.2 知识与表示30
3.3.3 理论、实践与政策31
3.4 开放学术32
3.4.1 开放获取研究成果32
3.4.2 开放获取数据34
3.4.3 开放技术37
3.5 交流融合38
3.5.1 数据隐喻38
3.5.2 数据单元40
3.5.3 记录文件42
3.6 结论43
第4章 数据多样性44
4.1 引言44
4.2 学科与数据45
4.3 数据大小问题46
4.3.1 项目目标47
4.3.2 数据采集48
4.3.3 数据分析49
4.4 数据产生问题50
4.4.1 距离问题51
4.4.2 外部影响因素57
4.5 结论64
第二部分 数据学术案例研究
第5章 自然科学领域的数据学术66
5.1 引言66
5.1.1 研究方法与数据实践66
5.1.2 自然科学案例67
5.2 天文学68
5.2.1 数据大小问题69
5.2.2 数据产生问题72
5.2.3 天文学研究实践82
5.3 传感器网络科学与技术85
5.3.1 数据大小问题86
5.3.2 数据产生问题87
5.3.3 嵌入式传感器网络研究实践93
5.4 结论98
第6章 社会科学领域的数据学术100
6.1 引言100
6.1.1 研究方法与数据实践101
6.1.2 社会科学案例102
6.2 互联网调查与社交媒体研究102
6.2.1 数据大小问题103
6.2.2 数据产生问题104
6.2.3 互联网调查与社交媒体研究实践110
6.3 社会技术研究115
6.3.1 数据大小问题115
6.3.2 数据产生问题116
6.3.3 CENS的社会技术研究实践120
6.4 结论126
第7章 人文学科领域的数据学术129
7.1 引言129
7.1.1 研究方法与数据实践130
7.1.2 人文学科案例131
7.2 古典艺术与考古学132
7.2.1 数据大小问题133
7.2.2 数据产生问题133
7.2.3 古典艺术与考古学研究实践144
7.3 佛教研究150
7.3.1 数据大小问题151
7.3.2 数据产生问题151
7.3.3 佛教研究实践156
7.4 结论161
第三部分 数据政策与实践
第8章 数据共享、发布与重用166
8.1 引言166
8.2 研究类数据的供求分析168
8.2.1 研究类数据的供给分析169
8.2.2 研究类数据的需求分析173
8.3 学术动机174
8.3.1 出版物与数据174
8.3.2 数据资产与数据债务177
8.3.3 数据发布178
8.3.4 获取重用数据181
8.4 知识基础设施183
8.4.1 知识库、数据集与档案馆183
8.4.2 个体数据实践185
8.4.3 人力基础设施186
8.4.4 棘手问题187
8.5 各学科领域的知识基础设施187
8.5.1 自然科学188
8.5.2 社会科学192
8.5.3 人文学科193
8.6 结论194
第9章 数据信誉、归属与发现197
9.1 引言197
9.2 原则与问题199
9.3 理论与实践200
9.3.1 内容与格式:如何引用201
9.3.2 引用行为理论:何时、为何引用何种对象203
9.3.3 明确与否:信誉授予对象与责任归属对象206
9.3.4 名称或编号:身份问题211
9.3.5 当理论遇到技术:引用行为218
9.3.6 风险与回报:引用价值219
9.4 结论221
第10章 保存何种数据及其原因223
10.1 引言223
10.2 挑战回顾225
10.2.1 数据权利、责任、角色和风险 225
10.2.2 数据共享227
10.2.3 出版物与数据229
10.2.4 数据获取232
10.2.5 利益相关者及其技能233
10.2.6 过去、现在和未来的知识基础设施235
10.3 结论237
术语表238
人名表251
机构、书籍和项目名称表258
参考文献
前 言
前 言‖在“大数据”风靡的当代,学术研究中的“小数据”依旧不容小觑。随着数据量的增加,学者们进行个体研究的能力却不断退化。因为他们从未距离研究对象如此遥远。新工具和新视角成为学术研究的必需品。但相对于“小数据”而言,“大数据”不一定是好的选择。因为研究者距离数据来源(即数据采集、处理、提炼和转换方式及其对应的研究假设和目的)越远,就越难理解数据代表的实际意义。因此,学者们更倾向于使用少量数据进行更深入细致的研究。但当数据尚未被发现甚至不可能被发现时,学者们将面临“无数据”的窘境。
相对于一般商品而言,研究类数据(research data)的利用价值或多或少。数据管理计划、数据发布需求以及由资助机构、学术期刊和科研机构提出的积极政策都很难适应数据多样性和跨领域的新实践。除了按例定义之外,很少有政策尝试给出数据的定义。那些反映学术界利益相关者竞争机制和动机的政策更是少之又少。数据的含义因人而异,因时不同;数据可以像资产一样受控、积累、交易、组合投资、挖掘甚至可能被发布;同时,数据也可以像债务一样被管理、保护或者毁约。数据的敏感性和保密性可能很高,因此数据发布往往伴随着高风险。数据价值可能立即显现,也可能很久之后才引人注意。有些数据值得长期监护,但大部分数据都只具有短期价值。某些研究类数据的价值可能在几个小时或几个月之内,随着技术和领域前沿工作的进步而不复存在。
要理解数据在学术研究中的价值,首先必须明确数据绝非一般事物,其不是具有本质内涵的自然对象。恰恰相反,出于研究或学术目的,学者们往往需要证明现象发生的论据,即观察结果、客观对象以及其他实体,而数据正是这些论据的表现形式。而且这种具体表现形式会因学者、情景以及时间的不同而有所差异。学者们虽然在自然科学、社会科学以及人文学科领域内创造、使用、分析和解释数据,但都尚未就数据定义达成共识。把某种事物概念化为数据的过程本身就是一种学术行为。学术活动包括寻求论据、解释现象以及论证观点等,这些活动以数据为媒介,终往往表现为期刊论文、专著、会议论文以及学术界认可的其他形式。考虑数据重用的研究极为少见。
伽利略使用笔记本记录观察到的现象,19世纪的天文学家把图像刻在玻璃板上,而今天的天文学家则使用数字设备捕获光子。普通相机拍摄的夜空图像之所以能与航空任务采集的图像基本相似,是因为天文学家已经在数据描述和映射的表示体系上达成一致。为集成几个世纪以来的观测数据,天文学家已经在标准、工具和档案方面做了大量工作。即便如此,该领域的知识基础设施还远未建成,更不用说完全自动化了。就数据获取的组织和协调而言,信息专业技术人员在天文学等领域发挥着重要作用。
出版物和数据之间的联系体现在多个方面,这正是研究类数据在学术交流范围内得以充分利用的原因。数据创造可能需要长期的深思熟虑,这一漫长过程积累了许多随时间可增值的资源。但数据创造也可能历时很短,甚至具有偶发性。在后两种情况下,研究者需要尽可能记录现象发生时的所有仪器数据。在天文学、社会学和人种学等领域,不论研究计划制定得有多好,数据采集都具有随机性,因为每个阶段的研究发现都会影响下一阶段的数据选择。因此,任何领域的学者都需要学会评估数据优劣、判定数据信度和效度以及适应实验室研究、实地调查和档案馆的条件。出版物是特定领域中假设读者具有专业知识的条件下,对研究成果进行报告的形式,其为读者理解研究成果的论点、方法及结论提供了必要信息。但因为假定读者熟悉该领域,所以其往往省略重复研究所需的细节。虽然人们对数据发布各执己见,但数据的重复性与再现性只在特定领域具有相关性。而且即使是在这些领域,真正实现重复与再现也很困难。而判断哪个学术研究成果更具有保存价值更是难上加难。
数据管理、发布和共享等相关政策模糊了数据在学术活动中的复杂作用,而且在很大程度上忽略了领域内与领域间政策实践中的差异性。“数据”的概念在自然科学、社会科学和人文学科之间甚至同一学科内都存在很大差异。数据管理在很多领域内可学不可教,这使得现有解决方案缺乏系统性。一般而言,研究人员重用自己的数据都有很大困难,更不用说使这些数据为具有不同需求的其他人所用。由于数据共享实施难度大、激励机制有限,而且在知识基础设施工程建设方面需要大量投资,所以其规范仅存在于部分领域。
本书面向包括研究类数据利益相关者在内的广大读者,具体包括学者、研究人员、高校领导、出版商、图书馆和数据档案馆的工作人员以及投资决策者和政策制定者等。部分使用四章篇幅界定“数据”与“学术”的概念,详细讨论了数据、学术、知识基础设施以及研究实践的多样性。第二部分包括三章,分别探究了自然科学、社会科学和人文学科领域的数据学术(data scholarship)。这三个案例分析结构平行,便于进行跨领域对比。第三部分涵盖三个章节,主要阐述数据策略和数据实践相关内容,并尝试分析数据学术面临众多棘手问题的原因。这部分具体包括:数据共享、发布与重用,
相对于一般商品而言,研究类数据(research data)的利用价值或多或少。数据管理计划、数据发布需求以及由资助机构、学术期刊和科研机构提出的积极政策都很难适应数据多样性和跨领域的新实践。除了按例定义之外,很少有政策尝试给出数据的定义。那些反映学术界利益相关者竞争机制和动机的政策更是少之又少。数据的含义因人而异,因时不同;数据可以像资产一样受控、积累、交易、组合投资、挖掘甚至可能被发布;同时,数据也可以像债务一样被管理、保护或者毁约。数据的敏感性和保密性可能很高,因此数据发布往往伴随着高风险。数据价值可能立即显现,也可能很久之后才引人注意。有些数据值得长期监护,但大部分数据都只具有短期价值。某些研究类数据的价值可能在几个小时或几个月之内,随着技术和领域前沿工作的进步而不复存在。
要理解数据在学术研究中的价值,首先必须明确数据绝非一般事物,其不是具有本质内涵的自然对象。恰恰相反,出于研究或学术目的,学者们往往需要证明现象发生的论据,即观察结果、客观对象以及其他实体,而数据正是这些论据的表现形式。而且这种具体表现形式会因学者、情景以及时间的不同而有所差异。学者们虽然在自然科学、社会科学以及人文学科领域内创造、使用、分析和解释数据,但都尚未就数据定义达成共识。把某种事物概念化为数据的过程本身就是一种学术行为。学术活动包括寻求论据、解释现象以及论证观点等,这些活动以数据为媒介,终往往表现为期刊论文、专著、会议论文以及学术界认可的其他形式。考虑数据重用的研究极为少见。
伽利略使用笔记本记录观察到的现象,19世纪的天文学家把图像刻在玻璃板上,而今天的天文学家则使用数字设备捕获光子。普通相机拍摄的夜空图像之所以能与航空任务采集的图像基本相似,是因为天文学家已经在数据描述和映射的表示体系上达成一致。为集成几个世纪以来的观测数据,天文学家已经在标准、工具和档案方面做了大量工作。即便如此,该领域的知识基础设施还远未建成,更不用说完全自动化了。就数据获取的组织和协调而言,信息专业技术人员在天文学等领域发挥着重要作用。
出版物和数据之间的联系体现在多个方面,这正是研究类数据在学术交流范围内得以充分利用的原因。数据创造可能需要长期的深思熟虑,这一漫长过程积累了许多随时间可增值的资源。但数据创造也可能历时很短,甚至具有偶发性。在后两种情况下,研究者需要尽可能记录现象发生时的所有仪器数据。在天文学、社会学和人种学等领域,不论研究计划制定得有多好,数据采集都具有随机性,因为每个阶段的研究发现都会影响下一阶段的数据选择。因此,任何领域的学者都需要学会评估数据优劣、判定数据信度和效度以及适应实验室研究、实地调查和档案馆的条件。出版物是特定领域中假设读者具有专业知识的条件下,对研究成果进行报告的形式,其为读者理解研究成果的论点、方法及结论提供了必要信息。但因为假定读者熟悉该领域,所以其往往省略重复研究所需的细节。虽然人们对数据发布各执己见,但数据的重复性与再现性只在特定领域具有相关性。而且即使是在这些领域,真正实现重复与再现也很困难。而判断哪个学术研究成果更具有保存价值更是难上加难。
数据管理、发布和共享等相关政策模糊了数据在学术活动中的复杂作用,而且在很大程度上忽略了领域内与领域间政策实践中的差异性。“数据”的概念在自然科学、社会科学和人文学科之间甚至同一学科内都存在很大差异。数据管理在很多领域内可学不可教,这使得现有解决方案缺乏系统性。一般而言,研究人员重用自己的数据都有很大困难,更不用说使这些数据为具有不同需求的其他人所用。由于数据共享实施难度大、激励机制有限,而且在知识基础设施工程建设方面需要大量投资,所以其规范仅存在于部分领域。
本书面向包括研究类数据利益相关者在内的广大读者,具体包括学者、研究人员、高校领导、出版商、图书馆和数据档案馆的工作人员以及投资决策者和政策制定者等。部分使用四章篇幅界定“数据”与“学术”的概念,详细讨论了数据、学术、知识基础设施以及研究实践的多样性。第二部分包括三章,分别探究了自然科学、社会科学和人文学科领域的数据学术(data scholarship)。这三个案例分析结构平行,便于进行跨领域对比。第三部分涵盖三个章节,主要阐述数据策略和数据实践相关内容,并尝试分析数据学术面临众多棘手问题的原因。这部分具体包括:数据共享、发布与重用,
评论
还没有评论。