描述
开 本: 16开纸 张: 胶版纸包 装: 平装是否套装: 否国际标准书号ISBN: 9787121194498
本书从工程应用角度出发,以线性系统理论和*控制为主线,介绍现代控制理论的基本方法。其中,线性系统理论部分主要阐述状态空间分析法和综合法的基本内容,包括动态系统的状态空间描述、动态系统的定量分析(状态方程的解)和定性分析(能控性、能观测性、李亚普诺夫稳定性)、动态系统的综合(状态反馈与状态观测器设计);*控制部分在介绍解决*问题3种基本方法(变分法、极小值原理、动态规划法)的基础上,阐述两类典型*反馈系统的设计(线性二次型*控制、小时间控制)。本书在保证理论知识体系结构完整的前提下,融入MATLAB在线性系统理论和*控制中的应用。
绪论
0.1 自动控制理论的发展与现状
0.2 现代控制理论的研究范围
0.3 经典控制理论与现代控制理论的联系与比较
0.4 MATLAB控制系统工具箱简介
0.5 本书综述
第1章 动态系统的状态空间描述
1.1 引言
1.2 动态系统的状态空间模型
1.2.1 状态空间的基本概念
1.2.2 动态系统状态空间表达式的一般形式
1.2.3 状态空间模型的图示
1.2.4 由系统机理建立状态空间模型示例
1.3 动态系统数学模型变换
1.3.1 状态向量的线性变换与状态空间表达式标准型
1.3.2 系统的高阶微分方程描述化为状态空间描述
1.3.3 系统的传递函数描述化为状态空间描述
1.3.4 系统的传递函数阵
1.4 离散系统的状态空间描述
1.4.1 离散系统的状态空间表达式
1.4.2 差分方程化为状态空间表达式
1.4.3 由脉冲传递函数化为状态空间表达式
1.4.4 由离散系统状态空间表达式求脉冲传递函数矩阵
1.5 MATLAB在系统数学模型变换中的应用
1.5.1 系统的模型
1.5.2 系统模型的转换
1.5.3 系统的线性非奇异变换与标准型状态空间表达式
小结
思考题与习题1
上机实验题1
第2章 线性系统动态分析
2.1 引言
2.2 线性定常齐次状态方程的解
2.3 状态转移矩阵的性质及其计算方法
2.3.1 线性定常系统状态转移矩阵的运算性质
2.3.2 线性定常系统状态转移矩阵的计算方法
2.4 线性定常非齐次状态方程的解
2.5 线性时变系统状态方程的解
2.5.1 线性时变系统状态转移矩阵的求解
2.5.2 线性时变系统状态转移矩阵的性质
2.5.3 线性时变非齐次状态方程的解
2.6 离散状态方程的解
2.6.1 递推法求解线性离散状态方程
2.6.2 Z变换法求解线性定常离散状态方程
2.7 连续状态方程的离散化
2.7.1 线性定常连续状态方程的离散化
2.7.2 线性时变连续状态方程的离散化
2.8 MATLAB在线性系统动态分析中的应用
2.8.1 应用MATLAB计算线性定常系统的矩阵指数(状态转移矩阵)
2.8.2 应用MATLAB求定常系统时间响应
2.8.3 应用MATLAB变连续状态空间模型为离散状态空间模型
小结
思考题与习题2
上机实验题2
第3章 线性系统的能控性和能观测性分析
3.1 引言
3.2 能控性与能观测性的概念与示例
3.3 能控性和能观测性定义
3.3.1 能控性定义
3.3.2 能观测性定义
3.4 线性连续系统能控性判据
3.4.1 线性定常连续系统能控性判据
3.4.2 线性定常连续系统输出能控性
3.4.3 线性时变连续系统能控性判据
3.5 线性连续系统能观测性判据
3.5.1 线性定常连续系统能观测性判据
3.5.2 线性时变连续系统能观测性判据
3.6 线性离散系统的能控性与能观测性
3.6.1 线性离散系统能控性定义
3.6.2 线性定常离散系统能控性的秩判据
3.6.3 线性离散系统能观测性定义
3.6.4 线性定常离散系统能观测性的秩判据
3.6.5 离散化系统能控性、能观测性与采样周期的关系
3.7 系统能控性和能观测性的对偶原理
3.7.1 线性系统的对偶关系
3.7.2 对偶原理
3.8 线性系统的结构分解
3.8.1 化为约当标准型的分解
3.8.2 按能控性和能观测性分解
3.9 能控性和能观测性与传递函数(阵)的关系
3.10 能控标准型与能观测标准型
3.10.1 单输入系统的能控标准型
3.10.2 单输出系统的能观测标准型
3.11 传递函数矩阵的状态空间实现
3.11.1 实现和小实现概述
3.11.2 传递函数矩阵的能控标准型实现和能观测标准型实现
3.11.3 传递函数矩阵的小实现
3.12 MATLAB在能控性和能观测性分析中的应用
3.12.1 系统能控、能观测性分析的MATLAB函数
3.12.2 用MATLAB进行系统能控性和能观测性分析举例
小结
思考题与习题3
上机实验题3
第4章 李亚普诺夫稳定性分析
4.1 引言
4.2 外部稳定性和内部稳定性
4.2.1 外部稳定性
4.2.2 内部稳定性
4.2.3 外部稳定性与内部稳定性的关系
4.3 李亚普诺夫稳定性的基本概念
4.3.1 平衡状态
4.3.2 范数
4.3.3 李亚普诺夫稳定性定义
4.4 李亚普诺夫稳定性定理
4.4.1 二次型函数及其定号性
4.4.2 李亚普诺夫第二法
4.5 线性定常系统李亚普诺夫稳定性分析
4.5.1 李亚普诺夫法(间接法)
4.5.2 李亚普诺夫第二法
4.6 线性时变系统李亚普诺夫函数的求法
4.6.1 线性时变连续系统
4.6.2 线性时变离散系统
4.7 非线性系统李亚普诺夫稳定性分析
4.7.1 李亚普诺夫法分析非线性系统的稳定性
4.7.2 李亚普诺夫第二法在非线性系统稳定性分析中的应用
4.8 李亚普诺夫直接法应用举例
4.9 MATLAB在系统稳定性分析中的应用
4.9.1 李亚普诺夫法
4.9.2 李亚普诺夫第二法
小结
思考题与习题4
上机实验题4
第5章 状态反馈与状态观测器
5.1 引言
5.2 状态反馈与输出反馈
5.2.1 状态反馈
5.2.2 输出反馈
5.3 反馈控制对能控性与能观测性的影响
5.4 闭环系统极点配置
5.4.1 采用状态反馈配置闭环系统极点
5.4.2 采用线性非动态输出反馈至参考输入配置闭环系统极点
5.4.3 镇定问题
5.5 状态观测器
5.5.1 全维观测器的构造思想
5.5.2 闭环观测器极点配置
5.5.3 降维观测器
5.6 采用状态观测器的状态反馈系统
5.7 解耦控制
5.7.1 前馈补偿器解耦
5.7.2 输入变换与状态反馈相结合实现解耦控制
5.8 MATLAB在闭环极点配置及状态观测器设计中的应用
5.8.1 用MATLAB求解闭环极点配置问题
5.8.2 用MATLAB设计状态观测器
5.8.3 基于SIMULINK的状态反馈系统仿真研究
如何使状态空间控制理论与工程实际问题紧密结合,提高学生灵活、综合应用现代控制理论分析、解决工程实际问题的能力,为其今后从事先进控制理论和技术的研究开发提供支持,是“现代控制理论”教学实践中一直存在的难题。为了适应现代控制理论教学改革需要和21世纪对人才培养的要求,本书第1版已作了一定的努力和尝试,基本形成了结构清晰,注重物理概念和工程应用背景,融入MATLAB应用,例题、习题丰富,利于自学等特色,并受到了读者的肯定。本次再版在保持第1版框架体系、主要内容及基本特色的基础上,主要进行了如下修改和补充: (1)在第3章增加传递函数矩阵的状态空间实现; (2)在介绍李亚普诺夫稳定性理论前,增加外部稳定性和内部稳定性的比较分析; (3)在第5章增加基于状态空间综合法的直流电动机调速控制系统设计举例; (4)充实了一些综合、灵活应用知识的习题; (5)改正了第1版中存在的疏漏,修改了部分内容的阐述方式,力求符合理工科学生的认识规律,尽量避免烦琐的数学证明,注重应用对偶性质简化证明。 本书第1版由王宏华任主编,王时胜任副主编,高强、李智、张燕、安连祥参编。本次再版工作主要由王宏华结合多年教学实践的经验和体会完成。 王执铨教授担任本书第1版的主审,提出了许多宝贵的意见。本书在编写过程中,参阅了国内外专家、学者的教材、著作,本次再版也是在电子工业出版社凌毅编辑的促进与支持下才顺利与读者见面的,谨在此一并致谢。 本书提供配套的电子课件及相关仿真程序,可登录电子工业出版社的华信教育资源网:www.hxedu.com.cn,注册后免费下载。 对于本版中存在的错误和不妥之处,恳请读者批评指正。作者的电子邮箱为:[email protected]。
评论
还没有评论。