描述
开 本: 16开国际标准书号ISBN: 9787564166748
1.1 车辆跟踪的研究背景
1.2 国内外研究现状及其应用
1.3 涉及的主要研究内容、面临的难点与解决方法
1.4 已有技术手段及其弱点
1.5 研究所采用的技术方案与路线
1.6 标准测试视频集及相关国内外主流杂志、会议
1.7 本书的结构安排
2 视觉目标车辆跟踪中粒子滤波算法的改进
2.1 粒子滤波简介
2.2 视觉目标跟踪中的粒子滤波理论分析
2.3 引入前帧加权采样的粒子滤波目标跟踪
2.4 引入残差信息的分层重采样
2.4.1 目前几种典型的重采样策略
2.4.2 引入残差信息的分层重采样算法步骤
2.4.3 引入残差信息的分层重采样的仿真研究
2.4.4 本章改进的重采样在运动车辆跟踪中的实际测试
2.5 视觉车辆跟踪中的特征选择与分析
2.5.1 本章所用纹理特征
2.5.2 车辆跟踪算法流程、试验结果与分析
3 子空间学习框架下的实时车辆图像跟踪
3.1 基于图像的子空间学习在车辆跟踪中的研究背景
3.2 增量主成分分析IPCA方法
3.2.1 Hall的增量主成分分析IPCA算法
3.2.2.Ross提出的IPCA算法
3.2.3 基于自相关矩阵更新与EVI)分解的IPCA
3.3 基于自相关矩阵的IPCA算法的执行
3.4 子空间更新方法的算法复杂度对比
3.5 自相关矩阵IPCA视觉跟踪的总体流程
3.5.1 本章跟踪涉及的相关参数与解释
3.5.2 本章目标车辆跟踪方法的总体执行流程
3.6 车辆跟踪的实验结果与对比分析
4 基于李群理论与特征子空间基的车辆跟踪
4.1 引言
4.2 群空间在视觉跟踪算法中的引入
4.3 基于仿射群组几何属性的视觉目标跟踪
4.3.1 李群与李代数
4.3.2 基于仿射群组的目标状态方程及其描述
4.3.3 融入测量向量后的粒子权值的更新与计算
4.3.4 增量PCA算法及目标图像特征子空间向量基
4.4 本章视觉目标跟踪算法的总体框架
4.5 基于标准数据源的试验与分析
5 基于在线学习理论的车辆识别与跟踪
5.1 车辆在线识别跟踪难点及研究背景
5.2 基于运动模板检测的online boosting算法
5.2.1 MT online boosting算法的构成与执行流程
5.2.2 MT online boosting算法中识别特征的选择
5.2.3 在线学习样本的检测定位及弱分类器的更新
5.2.4 参数设置及试验结果
6 B对偶空间几何中基于消隐点的摄像机标定与测距
6.1 目前常见的摄像机标定方法与视觉测距
6.2 B对偶空间几何中摄像机内参数初值的计算方法
6.2.1 B对偶空间几何的相关属性
6.2.2 B对偶空间下基于消隐点的内参数计算方法
6.3 本章摄像机标定的流程与相关参数
6.4 试验结果与对比分析
6.5 基于视觉方法的前车车距计算
参考文献
评论
还没有评论。