fbpx

[email protected]

购物车

 查看订单

  • 我的帐户
东东购 | EasternEast
  • 中文书店
    • 畅销排行榜
      • 小说 畅销榜
      • 童书 畅销榜
      • 外语畅销榜
      • 管理畅销榜
      • 法律畅销榜
      • 青春文学畅销榜
    • 热门分类
      • 社会小说
      • 成功/励志 畅销榜
      • 人物传记
      • 大陆原创
      • 绘本童书
      • 影视小说
    • 文学推荐
      • 文集
      • 戏剧
      • 纪实文学
      • 名家作品
      • 民间文学
      • 中国现当代随笔
    • 新书热卖榜
      • 小说 新书热卖榜
      • 青春文学 新书热卖榜
      • 童书 新书热卖榜
      • 管理 新书热卖榜
      • 成功/励志 新书热卖榜
      • 艺术 新书热卖榜
  • 精选分类
    • 小说
    • 保健养生
    • 烹饪/美食
    • 风水/占卜
    • 青春文学
    • 童书
    • 管理
    • 成功/励志
    • 文学
    • 哲学/宗教
    • 传记
    • 投资理财
    • 亲子家教
    • 动漫/幽默
    • 法律 Legal
    • 经济 Economics
    • 所有分类
  • 关于东东
  • 帮我找书
搜索
首页自然科学数学解析数论导论

解析数论导论

作者:(美)阿波斯托尔 出版社:世界图书出版公司 出版时间:2012年01月 

ISBN: 9787510040627
年中特卖用“SALE15”折扣卷全场书籍85折!可与三本88折,六本78折的优惠叠加计算!全球包邮!
trust badge

EUR €24.99

类别: 数学 SKU:5d87c5565f98494bcc157d4d 库存: 缺货
  • 描述
  • 评论( 0 )

描述

开 本: 24开纸 张: 胶版纸包 装: 平装是否套装: 否国际标准书号ISBN: 9787510040627

内容简介

  《解析数论导论(英文版)》是一部为本科生提供学习数论的基本思想和技巧的教程,重点强调解析数论。前五章讲述可约性、收敛和算术函数等基本概念。紧下来的章节讲述序列中素数的狄利克莱定理、高斯和、二次剩余、狄利克莱级数和欧拉积及其在黎曼zeta函数和狄利克莱函数中的应用,并且引进了划分的概念。书中每章末都收集了大量练习。前十章,除去第一章,任何具备基本微积分知识的人都可以读懂;最后四章需要对复函数理论(包括复积分和留数积分)一定的了解。
  
目  录

historical introduction
chapter 1 the fundamental theorem of arithmetic
 1.1 introduction
 1.2 divisibility
 1.3 greatest common divisor
 1.4 prime numbers
 1.5 the fundamental theorem of arithmetic
 1.6 the series of reciprocals of the primes
 1.7 the euclidean algorithm
 1.8 the greatest common divisor of more than two numbers
 exercises for chapter !
chapter 2 arithmetical functions and dirichlet multiplication
 2.1 introduction
 2.2 the mebius function mn)
 2.3 the euler totient function 0(n)
 2.4 a relation connecting (0 and it
 2.5 a product formula for (n)
 2.6 the dirichlet product of arithmetical functions
 2.7 dirichlet inverses and the mebius inversion formula
 2.8 the mangoidt function a(n)
 2.9 multiplicativefunctions
 2.10 multiplicative functions and dirichlet multiplication
 2.11 the inverse of a completely multiplicative function
 2.12 liouville’s function ).(.)
 2.13 the divisor functions a,(n)
 2.14 generalized convolutions
 2.15 formal power series
 2.16 the bell series of an arithmetical function
 2.17 bell series and dirichlet multiplication
 2.18 derivatives of arithmetical functions
 2.19 the selberg identity
 exercises for chapter 2
chapter 3 averages of arithmetical functions
 3.1 introduction
 3.2 the big oh notation. asymptotic equality of functions
 3.3 euler’s summation formula
 3.4 some elementary asymptotic formulas
 3.5 the average order old{n}
 3.6 the average order of the divisor functions a,(n)
 3.7 the average order of(n)
 3.8 an application to the distribution of lattice points visiblefrom the origin
 3.9 the average order of u(n) and of a(n)
 3.10 the partial sums ora dirichlet product
 3.11 applications to #(n) and a(n)
 3.12 another identity for the partial sums of a dirichletproduct
 exercises for chapter 3
chapter 4 some elementary theorems on the distribution ofprime
 numbers
 4.1 introduction
 4.2 chebyshev’s functions (x) and ,9(x)
 4.3 relations connecting (x) and ri(x)
 4.4 some equivalent forms of the prime number theorem
 4.5 inequalities for ri(n) and pn
 4.6 shapiro’s tauberian theorem
 4.7 applications of shapiro’s theorem
 4.8 an asymptotic formula for the partial sums σpsx (i/p)
 4.9 the partial sums of the m6bius function
 4.10 brief sketch of an elementary proof of the prime numbertheorem
 4.11 selberg’s asymptotic formula
 exercises for chapter 4 lot
chapter 5 congruences
 5.1 definition and basic properties of congruences
 5.2 residue classes and complete residue systems
 5.3 linear congruences
 5.4 reduced residue systems and the euler-fermat theorem il
 5.5 polynomial congruences modulo p. lagrange’s theorem
 5.6 applications of lagrange’s theorem
 5.7 simultaneous linear congruences. the chinese remainder theoreml !
 5.8 applications of the chinese remainder theorem il
 5.9 polynomial congruences with prime power moduli
 5.10 the principle of cross-classification
 5.11 a decomposition property of reduced residue systems
 exercises for chapter 5
chapter 6 finite abelian groups and their characters
 6.1 definitions
 6.2 examples of groups and subgroups
 6.3 elementary properties of groups
 6.4 construction of subgroups
 6.5 characters of finite abelian groups
 6.6 the character group
 6.7 the orthogonality relations for characters
 6.8 dirichlet characters
 6.9 sums involving dirichlet characters
 6.10 the nonvanishing of l(i, x) for real nonprincipal x l#l
 exercises for chapter 6
chapter 7 dirichlet’s theorem on primes in arithmeticprogressions
 7.1 introduction
 7.2 dirichlet’s theorem for primes of the form 4n – i and 4n +i
 7.3 the plan of the proof of dirichlet’s theorem
 7.4 proof of lemma 7.4
 7.5 proof of lemma 7.5
 7.6 proof of lemma 7.6
 7.7 proof of lemma 7.8
 7.8 proof of lemma 7.7
 7.9 distribution of primes in arithmetic progressions
 exercises for chapter 7
chapter 8 periodic arithmetical functions and gauss sums
 8.1 functions periodic modulo k
 8.2 existence of finite fourier series for periodic arithmeticalfunctions
 8.3 ramanujan’s sum and generalizations
 8.4 multiplicative properties of the sums sk(n)
 8.5 gauss sums associated with dirichlet characters
 8.6 dirichlet characters with nonvanishing gauss sums
 8.7 induced moduli and primitive characters
 8.8 further properties of induced moduli
 8.9 the conductor of a character
 8.10 primitive characters and separable gauss sums
 8.11 the finite fourier series of the dirichlet characters
 8.12 p61ya’s inequality for the partial sums of primitivecharacters
 exercises for chapter 8
chapter 9 quadratic residues and the quadratic reciprocitylaw
 9.1 quadratic residues
 9.2 legendre’s symbol and its properties
 9.3 evaluation of(- lip) and (2]p)
 9.4 gauss’ lemma
 9.5 the quadratic reciprocity law
 9.6 applications of the reciprocity law
 9.7 the jacobi symbol
 9.8 applications to diophantine equations
 9.9 gauss sums and the quadratic reciprocity law
 9.10 the reciprocity law for quadratic gauss sums
 9.11 another proof of the quadratic reciprocity law
 exercisesfor chapter 9
chapter 10 primitive roots
 10.1 the exponent ora number mod m. primitive roots
 10.2 primitive roots and reduced residue systems
 10.3 the nonexistence of primitive roots mod 2′ for a ] 3
 10.4 the existence of primitive roots mod p for odd primes p
 10.5 primitive roots and quadratic residues
 10.6 the existence of primitive roots mod p
 10.7 the existence of primitive roots mod 2p
 10.8 the nonexistence of primitive roots in the remainingcases
 10.9 the number of primitive roots mod m
 10.10 the index calculus
 10.11 primitive roots and dirichlet characters
 10.12 real-valued dirichlet characters mod p
 10.13 primitive dirichlet characters mod p
 exercises for chapter 10
chapter 11 dirichlet series and euler products
 11.1 introduction
 11.2 the half-plane of absolute convergence of a dirichletseries
 11.3 the function defined by a dirichlet series
 11.4 multiplication of dirichlet series
 11.5 euler products
 11.6 the half-plane of convergence of a dirichlet series
 11.7 analytic properties of dirichlet series
 11.8 dirichlet series with nonnegative coefficients
 11.9 dirichlet series expressed as exponentials of dirichletseries
 11.10 mean value formulas for dirichlet series
 11.11 an integral formula for the coefficients of a dirichletseries
 11.12 an integral formula for the partial sums ora dirichletseries
 exercises for chapter ii
chapter 12 the functions ζ(s) and l(s, x)
 12.1 introduction
 12.2 properties of the gamma function
 12.3 lntegrai representation for the hurwitz zeta function
 12.4 a contour integral representation for the hurwitz zetafunction
 12.5 the analytic continuation of the hurwitz zeta function
 12.6 analytic continuation of ζ(s) and l(s, x)
 12.7 hurwitz’s formula for ζ(s, a)
 12.8 the functional equation for the riemann zeta function
 12.9 a functional equation for the hurwitz zeta function
 12.10 the functional equation for l-functions
 12.11 evaluation of ζ(-n, a)
 12.12 properties of bernoulli numbers and bernoullipolynomials
 12.13 formulas for l(0, z)
 12.14 approximation of ζ(s, a) by finite sums
 12.15 inequalities for iζ(s, a)l
 12.16 inequalities for iζ(s)l and il(s, x)l
 exercises for chapter 12
chapter 13 analytic proof of the prime number theorem
 13.1 theplan of the proof
 13.2 lemmas
 13.3 a contour integral representation for ψ(x)/x2
 13.4 upper bounds for ┃ζ(s)┃and iζ'(s)[ near the line a =1
 13.5 the nonvanishing of ζ(s) on the line a =1
 13.6 inequalities for ┃1//ζ(s) and ┃ζ'(s)ζ(s)┃
 13.7 completion of the proof of the prime number theorem
 13.8 zero-free regions for ζ(s)
 13.9 the riemann hypothesis
 13.10 application to the divisor functi6n
 13.11 application to euler’s totient
 13.12 extension of pe1ya’s inequality for character sums
 exercises for chapter 13
chapter 14 partitions
 14.1 introduction
 14.2 geometric representation of partitions
 14.3 generating functions for partitions
 14.4 euler’s pentagonal-number theorem
 14.5 combinatorial proof of euler’s pentagonal-numbertheorem
 14.6 euler’s recursion formula for p(n)
 14.7 an upper bound for p(n)
 14.8 jacobi’s triple product identity
 14.9 consequences of jacobi’s identity
 14.10 logarithmic differentiation of generating functions
 14.11 the partition identities of ramanujan
 exercises for chapter 14
bibliography
index of special symbols
index
 
  

抢先评论了 “解析数论导论” 取消回复

评论

还没有评论。

相关产品

加入购物车

数学指南:实用数学手册(畅销欧美,德文原版累计销量突破50万册)

EUR €75.99
加入购物车

高级应用计量经济学(清华经济学系列教材)

EUR €26.99
加入购物车

数学建模(原书第5版,从离散建模和连续建模两部分介绍整个建模过程的原理,使读者在创造性模型和经验模型的构建、模型分析以及模型研究中得到亲身实践,增强解决问题的能力)

EUR €58.99
阅读更多
缺货

线性代数应该这样学(第3版)

EUR €30.99

东东购的宗旨是服务喜爱阅读中文书籍的海外人民,提供一个完善的购书平台,让国人不论何时何地都能沉浸在书香之中,读着熟悉的中文字,回忆着家乡的味道。


安全加密结账 安心网络购物 支持Paypal付款

常见问题

  • 货物配送
  • 退换货政策
  • 隐私政策
  • 联盟营销

客户服务

  • 联系东东
  • 关于东东
  • 帮我找书
  • 货物追踪
  • 会员登入

订阅最新的优惠讯息和书籍资讯

选择币别

EUR
USD
CAD
AUD
NZD
NOK
GBP
CHF
SEK
CNY
UAH
ILS
SAR
MXN
KRW
MYR
SGD
HUF
TRY
JPY
HKD
TWD
facebookinstagram
©2020 东东购 EasternEast.com

限时特卖:用“SALE15”优惠券全场书籍85折!可与三本88折,六本78折的优惠叠加计算。 忽略