描述
开 本: 16开纸 张: 胶版纸包 装: 平装-胶订是否套装: 否国际标准书号ISBN: 9787111652090
编辑推荐
本书提供了对随机向量、随机矩阵、随机子空间和用于量化高维中不确定性的对象的深入了解。它从概率、分析和几何中汲取灵感,并成功地应用于数学、统计学、理论计算机科学、信号处理、优化等领域。
这是一本整合理论、关键工具,以及现代高维概率应用的教材。集中不等式是本书的核心内容,它涵盖了霍夫丁不等式和切尔诺夫不等式等经典结果以及矩阵伯恩斯坦不等式等新发展的理论。本书还介绍了基于随机过程的强大方法,包括斯莱皮恩不等式、苏达科夫不等式、达德利不等式,以及基于VC维数的通用链和界。书中配有大量插图,涉及协方差估计、聚类、网络、半定规划、编码、降维、矩阵补全、机器学习、压缩感知和稀疏回归等内容的经典和现代结果。书的后面给出了许多练习题的提示。
内容简介
本书全面介绍高维概率的理论、关键工具和现代应用,涵盖Hoeffding不等式和Chernoff不等式等经典结果以及Matrix Bernstein不等式等现代发展,还介绍了基于随机过程的强大方法,包括Slepian、Sudakov和Dudley不等式等工具,以及基于VC维数的通用链和界。全书使用了大量插图,包括协方差估计、聚类、网络、半定规划、编码、降维、矩阵补全、机器学习、压缩感知以及稀疏回归的经典和现代结果。
目 录
本书赞誉
序言
前言
第0章 预备知识:用概率覆盖一个几何集1
0.1 后注3
第1章 随机变量的预备知识4
1.1 随机变量的数字特征4
1.2 一些经典不等式5
1.3 极限理论7
1.4 后注8
第2章 独立随机变量和的集中9
2.1 集中不等式的由来9
2.2 霍夫丁不等式11
2.3 切尔诺夫不等式14
2.4 应用:随机图的度数16
2.5 次高斯分布17
2.6 广义霍夫丁不等式和辛钦不等式22
2.7 次指数分布24
2.8 伯恩斯坦不等式28
2.9 后注30
第3章 高维空间的随机向量32
3.1 范数的集中32
3.2 协方差矩阵与主成分分析法34
3.3 高维分布举例38
3.4 高维次高斯分布42
3.5 应用:Grothendieck不等式与半正定规划46
3.6 应用:图的最大分割50
3.7 核技巧与Grothendieck不等式的改良52
3.8 后注55
第4章 随机矩阵57
4.1 矩阵基础知识57
4.2 网、覆盖数和填充数61
4.3 应用:纠错码64
4.4 随机次高斯矩阵的上界67
4.5 应用:网络中的社区发现70
4.6 次高斯矩阵的双侧界74
4.7 应用:协方差估计与聚类算法75
4.8 后注78
第5章 没有独立性的集中80
5.1 球面上利普希茨函数的集中80
5.2 其他度量空间的集中85
5.3 应用:Johnson-Lindenstrauss引理89
5.4 矩阵伯恩斯坦不等式92
5.5 应用:用稀疏网络进行社区发现98
5.6 应用:一般分布的协方差估计99
5.7 后注101
第6章 二次型、对称化和压缩103
6.1 解耦103
6.2 Hanson-Wright不等式106
6.3 各向异性随机向量的集中109
6.4 对称化110
6.5 元素不是独立同分布的随机矩阵112
6.6 应用:矩阵补全114
6.7 压缩原理116
6.8 后注118
第7章 随机过程119
7.1 基本概念与例子119
7.2 Slepian不等式122
7.3 高斯矩阵的精确界127
7.4 Sudakov最小值不等式129
7.5 高斯宽度131
7.6 稳定维数、稳定秩和高斯复杂度135
7.7 集合的随机投影137
7.8 后注140
第8章 链142
8.1 Dudley不等式142
8.2 应用:经验过程148
8.3 VC维数152
8.4 应用:统计学习理论161
8.5 通用链166
8.6 Talagrand优化测度和比较定理169
8.7 Chevet不等式170
8.8 后注172
第9章 随机矩阵的偏差与几何结论174
9.1 矩阵偏差不等式174
9.2 随机矩阵、随机投影及协方差估计179
9.3 无限集上的Johnson-Lindenstrauss引理181
9.4 随机截面:M界和逃逸定理183
9.5 后注186
第10章 稀疏恢复187
10.1 高维信号恢复问题187
10.2 基于M界的信号恢复188
10.3 稀疏信号的恢复189
10.4 低秩矩阵的恢复192
10.5 精确恢复和RIP194
10.6 稀疏回归的Lasso算法199
10.7 后注203
第11章 Dvoretzky-Milman定理204
11.1 随机矩阵关于一般范数的偏差204
11.2 Johnson-Lindenstrauss嵌入和更精确的Chevet不等式206
11.3 Dvoretzky-Milman定理208
11.4 后注211
练习提示212
参考文献217
索引226
序言
前言
第0章 预备知识:用概率覆盖一个几何集1
0.1 后注3
第1章 随机变量的预备知识4
1.1 随机变量的数字特征4
1.2 一些经典不等式5
1.3 极限理论7
1.4 后注8
第2章 独立随机变量和的集中9
2.1 集中不等式的由来9
2.2 霍夫丁不等式11
2.3 切尔诺夫不等式14
2.4 应用:随机图的度数16
2.5 次高斯分布17
2.6 广义霍夫丁不等式和辛钦不等式22
2.7 次指数分布24
2.8 伯恩斯坦不等式28
2.9 后注30
第3章 高维空间的随机向量32
3.1 范数的集中32
3.2 协方差矩阵与主成分分析法34
3.3 高维分布举例38
3.4 高维次高斯分布42
3.5 应用:Grothendieck不等式与半正定规划46
3.6 应用:图的最大分割50
3.7 核技巧与Grothendieck不等式的改良52
3.8 后注55
第4章 随机矩阵57
4.1 矩阵基础知识57
4.2 网、覆盖数和填充数61
4.3 应用:纠错码64
4.4 随机次高斯矩阵的上界67
4.5 应用:网络中的社区发现70
4.6 次高斯矩阵的双侧界74
4.7 应用:协方差估计与聚类算法75
4.8 后注78
第5章 没有独立性的集中80
5.1 球面上利普希茨函数的集中80
5.2 其他度量空间的集中85
5.3 应用:Johnson-Lindenstrauss引理89
5.4 矩阵伯恩斯坦不等式92
5.5 应用:用稀疏网络进行社区发现98
5.6 应用:一般分布的协方差估计99
5.7 后注101
第6章 二次型、对称化和压缩103
6.1 解耦103
6.2 Hanson-Wright不等式106
6.3 各向异性随机向量的集中109
6.4 对称化110
6.5 元素不是独立同分布的随机矩阵112
6.6 应用:矩阵补全114
6.7 压缩原理116
6.8 后注118
第7章 随机过程119
7.1 基本概念与例子119
7.2 Slepian不等式122
7.3 高斯矩阵的精确界127
7.4 Sudakov最小值不等式129
7.5 高斯宽度131
7.6 稳定维数、稳定秩和高斯复杂度135
7.7 集合的随机投影137
7.8 后注140
第8章 链142
8.1 Dudley不等式142
8.2 应用:经验过程148
8.3 VC维数152
8.4 应用:统计学习理论161
8.5 通用链166
8.6 Talagrand优化测度和比较定理169
8.7 Chevet不等式170
8.8 后注172
第9章 随机矩阵的偏差与几何结论174
9.1 矩阵偏差不等式174
9.2 随机矩阵、随机投影及协方差估计179
9.3 无限集上的Johnson-Lindenstrauss引理181
9.4 随机截面:M界和逃逸定理183
9.5 后注186
第10章 稀疏恢复187
10.1 高维信号恢复问题187
10.2 基于M界的信号恢复188
10.3 稀疏信号的恢复189
10.4 低秩矩阵的恢复192
10.5 精确恢复和RIP194
10.6 稀疏回归的Lasso算法199
10.7 后注203
第11章 Dvoretzky-Milman定理204
11.1 随机矩阵关于一般范数的偏差204
11.2 Johnson-Lindenstrauss嵌入和更精确的Chevet不等式206
11.3 Dvoretzky-Milman定理208
11.4 后注211
练习提示212
参考文献217
索引226
前 言
读者对象
这是一本着眼于数据科学应用的高维概率论教材,它面向数学、统计学、电气工程、计算生物学及相关领域的博士生和高年级硕士生以及初级研究人员,为扩展他们在现代数据科学研究中使用的理论方法而写.
关于本书
数据科学正在快速发展,概率方法经常为其提供基础和灵感. 如今,一门经典的研究生概率论课程已经不足以达到数据科学研究人员所期望的数学复杂程度. 本书旨在部分地填补这一空白. 它提出了一些关键的概率方法和结果,这些方法和结果为数学数据科学家提供了必要的理论工具. 它可以作为概率论第二门课程的教材,以使学生对数据科学的应用有所了解. 本书也适合自学.
本书内容
高维概率是概率论中一个研究Rn中的随机对象的分支,其中维数n可能非常大. 本书重点介绍随机向量、随机矩阵和随机投影. 它讲授分析这些对象的基本理论技能,包括集中不等式、覆盖与填充理论、解耦和对称化技巧、随机过程的链和比较技术、基于VC维数的组合推理等.
高维概率的研究为数据科学应用提供了重要的理论工具. 本书将理论与协方差估计、半正定规划、网络、统计学习要素、纠错码、聚类、矩阵补全、降维、稀疏信号恢复和稀疏回归等应用结合起来.
预备知识
阅读本书的基本前提是具备扎实的概率论基础(硕士或博士水平),对本科阶段的线性代数有很好的掌握,对度量空间、赋范空间和希尔伯特空间以及线性算子的基本概念有全面的了解. 对测度论是否了解并不重要,但会有所帮助.
关于练习
练习穿插在正文中. 对文中所提的问题,读者可以立即进行验证,以检验对该问题的理解,并为接下来的应用做更好的准备. 练习的难度用咖啡杯的数量来表示,排列顺序由易()到难(). 带指向的手()意味着该练习在本书末尾有提示.
相关阅读
本书只涵盖了高维概率理论内容的一小部分,并且其应用仅限于数据科学中的一些例子. 本书的每章结尾都有一个后注,给出与本章内容相关的其他文献,也给出了一些特别有用的信息. 现代经典的文献[8]全面介绍了概率方法在离散数学和计算机科学中的应用. 文献[19]呈现了数学数据科学的全景图,其重点在计算机科学中的应用上. 研究生和高年级本科生都可以阅读这两本书. 文献[206]是面向研究生的,更多地介绍了高维概率的理论.
致谢
许多同事的反馈对准备本书很有帮助. 特别感谢Florent Benaych-Georges、Jennifer Bryson、Lukas Grtz、Rémi Gribonval、Ping Hsu、Mike Izbicki、George Linderman Cong Ma、Galyna Livshyts、Jelani Nelson、Ekkehard Schnoor、Martin Spingler、Dominik Stger、Tim Sullivan、Terence Tao、Joel Tropp、Katarzyna Wyczesany、Yifei Shen和 Haoshu Xu提出的许多有价值的建议和更正,特别是Sjoerd Dirksen、Larry Goldstein、Wu Han、Han Wu和Mahdi Soltanolkotabi对本书的详细校对. 很感谢Can Le、Jennifer Bryson和我的儿子Ivan Vershynin在许多图片上的帮助.
这是一本着眼于数据科学应用的高维概率论教材,它面向数学、统计学、电气工程、计算生物学及相关领域的博士生和高年级硕士生以及初级研究人员,为扩展他们在现代数据科学研究中使用的理论方法而写.
关于本书
数据科学正在快速发展,概率方法经常为其提供基础和灵感. 如今,一门经典的研究生概率论课程已经不足以达到数据科学研究人员所期望的数学复杂程度. 本书旨在部分地填补这一空白. 它提出了一些关键的概率方法和结果,这些方法和结果为数学数据科学家提供了必要的理论工具. 它可以作为概率论第二门课程的教材,以使学生对数据科学的应用有所了解. 本书也适合自学.
本书内容
高维概率是概率论中一个研究Rn中的随机对象的分支,其中维数n可能非常大. 本书重点介绍随机向量、随机矩阵和随机投影. 它讲授分析这些对象的基本理论技能,包括集中不等式、覆盖与填充理论、解耦和对称化技巧、随机过程的链和比较技术、基于VC维数的组合推理等.
高维概率的研究为数据科学应用提供了重要的理论工具. 本书将理论与协方差估计、半正定规划、网络、统计学习要素、纠错码、聚类、矩阵补全、降维、稀疏信号恢复和稀疏回归等应用结合起来.
预备知识
阅读本书的基本前提是具备扎实的概率论基础(硕士或博士水平),对本科阶段的线性代数有很好的掌握,对度量空间、赋范空间和希尔伯特空间以及线性算子的基本概念有全面的了解. 对测度论是否了解并不重要,但会有所帮助.
关于练习
练习穿插在正文中. 对文中所提的问题,读者可以立即进行验证,以检验对该问题的理解,并为接下来的应用做更好的准备. 练习的难度用咖啡杯的数量来表示,排列顺序由易()到难(). 带指向的手()意味着该练习在本书末尾有提示.
相关阅读
本书只涵盖了高维概率理论内容的一小部分,并且其应用仅限于数据科学中的一些例子. 本书的每章结尾都有一个后注,给出与本章内容相关的其他文献,也给出了一些特别有用的信息. 现代经典的文献[8]全面介绍了概率方法在离散数学和计算机科学中的应用. 文献[19]呈现了数学数据科学的全景图,其重点在计算机科学中的应用上. 研究生和高年级本科生都可以阅读这两本书. 文献[206]是面向研究生的,更多地介绍了高维概率的理论.
致谢
许多同事的反馈对准备本书很有帮助. 特别感谢Florent Benaych-Georges、Jennifer Bryson、Lukas Grtz、Rémi Gribonval、Ping Hsu、Mike Izbicki、George Linderman Cong Ma、Galyna Livshyts、Jelani Nelson、Ekkehard Schnoor、Martin Spingler、Dominik Stger、Tim Sullivan、Terence Tao、Joel Tropp、Katarzyna Wyczesany、Yifei Shen和 Haoshu Xu提出的许多有价值的建议和更正,特别是Sjoerd Dirksen、Larry Goldstein、Wu Han、Han Wu和Mahdi Soltanolkotabi对本书的详细校对. 很感谢Can Le、Jennifer Bryson和我的儿子Ivan Vershynin在许多图片上的帮助.
评论
还没有评论。