描述
开 本: 16开纸 张: 胶版纸包 装: 平装-胶订是否套装: 否国际标准书号ISBN: 9787111662150
? 电子产品热设计几年前还是一个非常生僻的词汇,随着人们对于产品的可靠性要求越来越高,提高产品性能的另一条蹊径——解决散热终于走进了人们的视野。各大科技公司也都纷纷重视起了热设计工程师这一重要人才。从何快速掌握热设计技巧、如何快速入门热设计行业,仍然是一个大壁垒。本书作者依托热设计网,积累了丰富了实践案例,从工程师的视角给您带了一场关于产品散热设计的饕餮盛宴,渴望入行、渴望提高的你,还在等什么,快来一起学习吧!
从热设计工程师具体技术工作层面出发,进行了完整的知识体系讲述。
?从热设计方案合理性的角度出发,全面分析了实际产品设计实例。
?从利于学习认知的方向出发,给出了电子产品热设计所要考虑的各方面内容。
?从热设计工程师思维方式养成过程出发,给出了合理的学习建议。
《从零开始学散热》从一名热设计工程师具体技术工作层面出发,提出了一系列如何保证热设计方案合理性的问题,并以一些实际的产品为例,进行了解释说明。全书内容涉及电子产品热设计的意义,热设计理论基础,热设计研发流程,散热方式的选择,芯片封装和电路板的热特性,散热器的设计,导热界面材料的选型设计,风扇的选型设计,热管和均温板,热设计中的噪声,风扇调速策略的制定和验证,热电冷却器、换热器和机柜空调,液冷设计,热测试,热仿真软件的功能、原理和使用方法,常见电子产品热设计实例,热、电、磁的结合等。本书详细地记录了一名热设计工程师热设计思维形成过程,希望能帮助读者形成自己的设计思维,从而能够应对任何从未遇到过的热问题。
目 录
前言
致谢
第1章 电子产品热设计的意义 1
1.1 温度对电子产品的影响 1
1.2 温度对芯片的影响机理 2
1.2.1 热应力和热应变 2
1.2.2 器件炸裂 4
1.2.3 腐蚀 4
1.2.4 氧化物分解 5
1.2.5 芯片功耗 5
1.2.6 电气性能变化 6
1.3 解决芯片热可靠性的两个维度 6
1.4 热设计方案的评估标准 7
1.5 本章小结 7
参考文献 8
第2章 热设计理论基础 9
2.1 热和温度 9
2.1.1 热动说和热质说 9
2.1.2 温度的物理意义 11
2.2 传热学 12
2.2.1 热传导 12
2.2.2 热对流 15
2.2.3 热辐射 16
2.3 热力学 19
2.3.1 热力学定律 19
2.3.2 热力学第二定律 19
2.3.3 热力学第三定律 20
2.3.4 热力学第零定律 20
2.3.5 理想气体定律 21
2.4 流体力学 22
2.4.1 流体的重要性质———黏性 22
2.4.2 流体压强———静压、动压和总压
2.4.3 表压、真空度和压强 25
2.4.4 流体流动状态———层流和湍流
2.5 扩展阅读:导热系数的本质 27
2.6 本章小结 28
参考文献 28
第3章 热设计研发流程 30
3.1 需求分析 31
3.2 概念设计 33
3.3 详细设计 34
3.4 测试验证 34
3.5 回归分析 34
3.6 发布与维护 35
3.7 本章小结 35
参考文献 35
第4章 散热方式的选择 36
4.1 散热方式选择的困难性 36
4.2 自然散热 39
4.3 强迫风冷 39
4.4 间接液冷 40
4.5 直接液冷 41
4.6 本章小结 42
参考文献 42
第5章 芯片封装和电路板的热特性 43
5.1 IC芯片封装概述 43
5.2 芯片封装热特性 44
5.2.1 芯片热特性基础 44
5.2.2 热阻的概念 45
5.2.3 芯片热特性的热阻描述 46
5.3 芯片封装热阻的影响因素 49
5.3.1 封装尺寸 49
5.3.2 封装材料 50
5.3.3 热源尺寸 50
5.3.4 单板尺寸和导热系数 51
5.3.5 芯片发热量以及外围气流速度
5.4 实验测量时结温的反推计算公式 52
5.5 常见的芯片封装及其热特性 52
5.5.1 球栅阵列式封装 54
5.5.2 晶体管外形封装 55
5.5.3 四边扁平封装 55
5.5.4 四边/双边无引脚扁平封装 56
5.5.5 封装演变趋势和热设计面临的机遇与挑战
5.6 印制电路板热特性及其在热设计中的关键作用
5.6.1 PCB热传导特点 58
5.6.2 PCB铜层敷设准则———热设计角度
5.6.3 热过孔及其设计注意点 60
5.7 本章小结 62
参考文献 63
第6章 散热器的设计 64
6.1 散热器设计需考虑的方面 64
6.1.1 发热源热流密度 64
6.1.2 元器件温度要求和工作环境 66
6.1.3 产品内部空间尺寸 67
6.1.4 散热器安装紧固力 67
6.1.5 成本考量 68
6.1.6 外观设计 68
6.2 几种常见的散热器优化设计思路 68
6.2.1 热传导———优化散热器扩散热阻
6.2.2 对流换热———强化对流换热效率
6.2.3 辐射换热———选择合适的表面处理方式
6.2.4 总结 72
6.3 散热器设计注意点汇总 72
6.4 本章小结 73
参考文献 73
第7章 导热界面材料的选型设计 74
7.1 为什么需要导热界面材料 74
7.2 导热界面材料的定义及种类 75
7.2.1 导热界面材料定义 75
7.2.2 导热界面材料的种类 75
7.3 导热界面材料的选用关注点 80
7.3.1 材料自身属性 80
7.3.2 应用场景因素 82
7.4 导热界面材料的实际运用 83
7.4.1 导热硅脂的实际运用 83
7.4.2 导热衬垫的实际运用 83
7.4.3 导热填缝剂的实际运用 85
7.4.4 石墨片的实际运用 85
7.5 导热界面材料选用的复杂性 86
7.6 本章小结 87
参考文献 87
第8章 风扇的选型设计 88
8.1 几何尺寸 89
8.2 确定风量 89
8.3 确定风扇风压 91
8.4 平行翅片散热器流阻计算 92
8.5 风扇的抽风和吹风设计 96
8.5.1 抽风设计 96
8.5.2 吹风设计 96
8.6 风扇转速控制方式 97
8.7 风扇噪声考量 97
8.8 风扇相似定理 98
8.9 风扇寿命可靠性 99
8.10 风扇失速区 100
8.11 风扇选型方法汇总 101
8.12 散热器和风扇的综合设计 102
8.13 本章小结 103
参考文献 104
第9章 热管和均温板 105
9.1 热管和均温板的特点和典型应用 105
9.2 热管和VC的基本工作原理 106
9.3 热管和VC的性能指标 108
9.4 超薄热管和超薄VC 109
9.5 热管和VC产品要考虑的细观因素 111
9.6 本章小结 111
参考文献 112
第10章 热电冷却器、换热器和机柜空调 113
10.1 热电冷却原理 113
10.2 热电冷却器在电子散热中的优缺点 114
10.3 热电冷却器的选型步骤 115
10.3.1 确定工作电流 116
10.3.2 确定工作电压 117
10.3.3 确定COP值和选择高效TEC的迭代方式 117
10.3.4 TEC与系统的匹配 118
10.4 换热器工作原理 118
10.5 换热器的选型 119
10.5.1 确定需求 120
10.5.2 计算换热效率 120
10.6 机柜空调 122
10.7 本章小结 124
参考文献 125
第11章 液冷设计 126
11.1 液冷设计概述 126
11.1.1 直接液冷 126
11.1.2 间接液冷 127
11.2 液冷散热的特点 128
11.3 液冷系统的分类与组成 128
11.3.1 封闭式单循环系统 128
11.3.2 封闭式双循环系统 129
11.3.3 开放式系统 129
11.3.4 半开放式系统 130
11.4 液冷设计各部分注意点 130
11.4.1 液体工质选择 130
11.4.2 冷板的设计 132
11.4.3 冷管和接头 133
11.4.4 泵的选择 134
11.4.5 冷排/换热器的选型设计 137
11.4.6 其他附件 138
11.5 冷板散热器的设计步骤和常见加工工艺 139
11.5.1 计算流量 140
11.5.2 确定冷板材质 140
11.5.3 流道设计 141
11.5.4 冷板类型及其优缺点 142
11.6 本章小结 143
参考文献 143
第12章 热设计中的噪声 145
12.1 热设计与噪声的关系 145
12.2 声音基础知识概述 145
12.2.1 声音的本质 145
12.2.2 噪声产生的原因 145
12.2.3 声音的几个关键参数 146
12.3 声音的分析 149
12.3.1 频程与频谱 149
12.3.2 响度与响度级 150
12.3.3 计权声级 152
12.4 声音的传播 153
12.5 电子产品热设计中的噪声 153
12.5.1 气动噪声 154
12.5.2 机械噪声 155
12.5.3 电磁噪声 155
12.6 噪声测量 155
12.7 噪声控制设计 156
12.7.1 控制声源 156
12.7.2 控制传声路径 156
12.7.3 控制声音接收者 158
12.8 噪声仿真 158
12.9 本章小结 158
参考文献 158
第13章 风扇调速策略的制定和验证 160
13.1 为什么要对风扇进行调速 160
13.2 风扇智能调速的条件 161
13.2.1 风扇转速必须可控 161
13.2.2 必须有可实时反馈产品散热风险的温度传感器 162
13.2.3 系统中必须内置有效的风扇调速程序 163
13.3 风扇调速策略的设计 164
13.3.1 温度传感器的布置 164
13.3.2 风扇调速策略整定步骤 165
13.4 异常情况的风扇转速应对 169
13.5 本章小结 169
第14章 热测试 171
14.1 热测试的目的和内容 171
14.2 热测试注意事项 171
14.2.1 确保设备的配置和负载与测试工况对应
14.2.2 确保设备使用的散热物料与设计方案一致
14.2.3 根据散热方式选择合适的测试环境
14.2.4 关注测试读取结果数据的稳定性
前 言
随着电子产品的形态功能演进,其温度问题也日渐凸显。从传统的3C产品,到新兴的无人机、新能源汽车、人工智能硬件等,热设计工程师无不扮演着越来越重要的角色。
合理控制温度是电子产品热设计的主要内容,但它绝不是热设计工作者应该考虑的目标。在施加温度控制方案的过程中,设计师还必须考虑其他多方面的问题,在成本、性能和可靠性之间找到一个平衡点,而寻找这个平衡点需要用到多方面的知识。
除了传热学和流体力学两个基本学科,电子产品的热设计还涉及工程控制学、结构力学、声学、材料学、电学、软件算法和机械加工等多个学科,不同种类的产品所考量的因素也有巨大差异。随着产品热功率密度的日渐提升,温度问题越发严峻,产品热设计的综合学科属性也越来越凸显。除了学科交叉性强,现代产品的快速更新迭代还对热设计师提出了更高的要求。他们除了要储备相关理论知识,还应该掌握科学有效的工作方法,理解热问题的根本解决思路,结合、推动甚至创造新的热管理手段,应对越来越多、越来越难的热问题。
本书就是按照上述思路编写而成的,结合多个案例,展示如何分析问题,如何通过现有技术解决这些问题,并阐述为更好解决这些问题,应该在哪些方面改进现有技术,要改进这些技术,应当学习、补充哪些新知识。
由于作者水平有限,书稿虽几经审改,但其中还难免有错误与不足之处,恳请读者不吝赐教。新的时代,新的机遇和挑战,热设计大有可为。期待您在本书中有所收获。
陈继良
评论
还没有评论。