fbpx

[email protected]

购物车

 查看订单

  • 我的帐户
东东购 | EasternEast
  • 中文书店
    • 畅销排行榜
      • 小说 畅销榜
      • 童书 畅销榜
      • 外语畅销榜
      • 管理畅销榜
      • 法律畅销榜
      • 青春文学畅销榜
    • 热门分类
      • 社会小说
      • 成功/励志 畅销榜
      • 人物传记
      • 大陆原创
      • 绘本童书
      • 影视小说
    • 文学推荐
      • 文集
      • 戏剧
      • 纪实文学
      • 名家作品
      • 民间文学
      • 中国现当代随笔
    • 新书热卖榜
      • 小说 新书热卖榜
      • 青春文学 新书热卖榜
      • 童书 新书热卖榜
      • 管理 新书热卖榜
      • 成功/励志 新书热卖榜
      • 艺术 新书热卖榜
  • 精选分类
    • 小说
    • 保健养生
    • 烹饪/美食
    • 风水/占卜
    • 青春文学
    • 童书
    • 管理
    • 成功/励志
    • 文学
    • 哲学/宗教
    • 传记
    • 投资理财
    • 亲子家教
    • 动漫/幽默
    • 法律 Legal
    • 经济 Economics
    • 所有分类
  • 关于东东
  • 帮我找书
搜索
首页计算机/网络人工智能机器学习公式详解 (“西瓜书”学习伴侣“南瓜书”正式版)

机器学习公式详解 (“西瓜书”学习伴侣“南瓜书”正式版)

人工智能领域中文的开山之作、周志华 西瓜书 机器学习 伴侣书,Datawhale开源协作学习笔记 南瓜书,机器学习初学小白提升数学基础能力的练习书!

作者:谢文睿,秦州 出版社:人民邮电出版社 出版时间:2021年03月 

ISBN: 9787115559104
年中特卖用“SALE15”折扣卷全场书籍85折!可与三本88折,六本78折的优惠叠加计算!全球包邮!
trust badge

EUR €30.99

类别: 计算机/网络 畅销榜, 人工智能 SKU:6182702df0f22475083ac54b 库存: 有现货
  • 描述
  • 评论( 0 )

描述

开 本: 20开纸 张: 胶版纸包 装: 平装-胶订是否套装: 否国际标准书号ISBN: 9787115559104

产品特色

编辑推荐

1.国内市场累计销量榜首的“西瓜书”《机器学习》公式完全解析指南!
“南瓜书”系Datawhale成员自学笔记,对“西瓜书”中250个重难点公式做了详细解析和推导(重难点公式覆盖率达99%),旨在解决机器学习中的数学难题。
2.机器学习初学小白提升数学基础能力的练习册!
以本科数学基础视角对“西瓜书”里比较难理解的公式加以解析和推导细节,补充大量重、难点数学知识和参考材料,分享在学习中遇到的“坑”以及跳过这个“坑”的方法,对于初学机器学习的小白也能上手练习!
3.俞勇、王斌、李沐、程明明、陈光(博主@爱可可-爱生活)、徐亦达等人工智能领域大咖亲笔推荐

 

内容简介

周志华老师的《机器学习》(俗称“西瓜书”)是机器学习领域的经典入门教材之一。本书(俗称“南瓜书”)基于Datawhale 成员自学“西瓜书”时记下的笔记编著而成,旨在对“西瓜书”中重难点公式加以解析,以及对部分公式补充具体的推导细节。

全书共16 章,与“西瓜书”章节、公式对应,每个公式的推导和解析都以本科数学基础的视角进行讲解,希望能够帮助读者达到“理工科数学基础扎实点的大二下学期学生”水平。每章都附有相关阅读材料,以便有兴趣的读者进一步钻研探索。

本书思路清晰,视角独特,结构合理,可作为高等院校计算机及相关专业的本科生或研究生教材,也可供对机器学习感兴趣的研究人员和工程技术人员阅读参考。

作者简介

谢文睿
北京工业大学硕士, 开源组织Datawhale 核心成员兼开源项目负责人,主要研究方向为机器学习与自然语言处理。

秦州
康奈尔大学计算机硕士,Datawhale重要贡献成员。阿里巴巴算法工程师,主要研究方向为图神经网络的研发和应用。CIKM 2019应用论文作者,开源图神经网络框架graph-learn核心开发者。

目  录

序(王斌 小米AI 实验室主任、NLP 首席科学家)
前言
主要符号表

第 1章 绪论
式(1.1)
式(1.2)

第 2章 模型评估与选择
式(2.20)
式(2.21)
式(2.27)
式(2.41)
附注
参考文献

第3章 线性模型
式(3.5)
式(3.6)
式(3.7)
式(3.10)
式(3.27)
式(3.30)
式(3.32)
式(3.37)
式(3.38)
式(3.39)
式(3.43)
式(3.44)
式(3.45)

第4章 决策树
式(4.1)
式(4.2)
式(4.6)
式(4.7)
式(4.8)
附注
参考文献

第5章 神经网络
式(5.2)
式(5.10)
式(5.12)
式(5.13)
式(5.14)
式(5.15)
ii j 目录
式(5.20)
式(5.22)
式(5.23)
式(5.24)
附注
参考文献

第6章 支持向量机
式(6.9)
式(6.10)
式(6.11)
式(6.13)
式(6.35)
式(6.37)
式(6.38)
式(6.39)
式(6.40)
式(6.41)
式(6.52)
式(6.60)
式(6.62)
式(6.63)
式(6.65)
式(6.66)
式(6.67)
式(6.70)
附注
参考文献

第7章 贝叶斯分类器
式(7.5)
式(7.6)
式(7.12)
式(7.13)
式(7.19)
式(7.20)
式(7.24)
式(7.25)
式(7.27)
式(7.34)
附注
参考文献

第8章 集成学习
式(8.1)
式(8.2)
式(8.3)
式(8.4)
式(8.5)
式(8.6)
式(8.7)
式(8.8)
式(8.9)
式(8.10)
式(8.11)
式(8.12)
式(8.13)
式(8.14)
式(8.16)
式(8.17)
式(8.18)
式(8.19)
式(8.20)
式(8.21)
式(8.22)
式(8.23)
式(8.24)
式(8.25)
式(8.26)
式(8.27)
式(8.28)
式(8.29)
式(8.30)
式(8.31)
式(8.32)
式(8.33)
式(8.34)
式(8.35)
式(8.36)

第9章 聚类
式(9.5)
式(9.6)
式(9.7)
式(9.8)
式(9.33)
式(9.34)
式(9.35)
式(9.38)

第 10章 降维与度量学习
式(10.1)
式(10.2)
式(10.3)
式(10.4)
式(10.5)
式(10.6)
式(10.10)
式(10.14)
式(10.17)
式(10.24)
式(10.28)
式(10.31)

第 11章 特征选择与稀疏学习
式(11.1)
式(11.2)
式(11.5)
式(11.6)
式(11.7)
式(11.10)
式(11.11)
式(11.12)
式(11.13)
式(11.14)
式(11.15)
式(11.16)
式(11.17)
式(11.18)

第 12章 计算学习理论
式(12.1)
式(12.2)
式(12.3)
式(12.4)
式(12.5)
式(12.7)
式(12.9)
式(12.10)
式(12.11)
式(12.12)
式(12.13)
式(12.14)
式(12.15)
式(12.16)
式(12.17)
式(12.18)
式(12.19)
式(12.20)
式(12.21)
式(12.22)
式(12.23)
式(12.24)
式(12.25)
式(12.26)
式(12.27)
式(12.28)
式(12.29)
式(12.30)
式(12.31)
式(12.32)
式(12.34)
式(12.36)
式(12.37)
式(12.38)
式(12.39)
式(12.40)
式(12.41)
式(12.42)
式(12.43)
式(12.44)
式(12.45)
式(12.46)
式(12.52)
式(12.53)
式(12.57)
式(12.58)
式(12.59)
式(12.60)
参考文献

第 13章 半监督学习
式(13.1)
式(13.2)
式(13.3)
式(13.4)
式(13.5)
式(13.6)
式(13.7)
式(13.8)
式(13.9)
式(13.12)
式(13.13)
式(13.14)
式(13.15)
式(13.16)
式(13.17)
式(13.20)

第 14章 概率图模型
式(14.1)
式(14.2)
式(14.3)
式(14.4)
式(14.7)
式(14.8)
式(14.9)
式(14.10)
式(14.14)
式(14.15)
式(14.16)
式(14.17)
式(14.18)
式(14.19)
式(14.20)
式(14.22)
式(14.26)
式(14.27)
式(14.28)
式(14.29)
式(14.30)
式(14.31)
式(14.32)
式(14.33)
式(14.34)
式(14.35)
式(14.36)
式(14.37)
式(14.38)
式(14.39)
式(14.40)
式(14.41)
式(14.42)
式(14.43)
式(14.44)

第 15章 规则学习
式(15.2)
式(15.3)
式(15.6)
式(15.7)
式(15.9)
式(15.10)
式(15.11)
式(15.12)
式(15.13)
式(15.14)
式(15.16)

第 16章 强化学习
式(16.2)
式(16.3)
式(16.4)
式(16.7)
式(16.8)
式(16.10)
式(16.14)
式(16.16)
式(16.31)

媒体评论

【小米AI 实验室主任、NLP 首席科学家 王斌 作序推荐】

这是一本与众不同的书。
首先,这是一本“伴侣书”。类似于咖啡伴侣一样,这本书是周志华教授的“西瓜书”——《机器学习》的伴侣书,它也有一个可爱的名字——“南瓜书”。其次,这是一本通过开源方式多人协作写成的书。这种多人分工合作、互相校验、开放监督的方式,既保证了书的质量,也保证了写作的效率。*后,这是一本完全根据学习经历编著而成的书。它完全从读者学习的角度出发,分享编著者在学习中遇到的“坑”以及跳过这个“坑

抢先评论了 “机器学习公式详解 (“西瓜书”学习伴侣“南瓜书”正式版)” 取消回复

评论

还没有评论。

相关产品

加入购物车

机器学习实战:基于Scikit-Learn和TensorFlow

EUR €68.99
阅读更多
缺货

奇点临近(一部预测人工智能和科技未来的奇书)

EUR €43.99
评分 4.50 / 5
加入购物车

分布式机器学习:算法、理论与实践

EUR €53.99
加入购物车

Python机器学习基础教程

EUR €48.99
评分 5.00 / 5

东东购的宗旨是服务喜爱阅读中文书籍的海外人民,提供一个完善的购书平台,让国人不论何时何地都能沉浸在书香之中,读着熟悉的中文字,回忆着家乡的味道。


安全加密结账 安心网络购物 支持Paypal付款

常见问题

  • 货物配送
  • 退换货政策
  • 隐私政策
  • 联盟营销

客户服务

  • 联系东东
  • 关于东东
  • 帮我找书
  • 货物追踪
  • 会员登入

订阅最新的优惠讯息和书籍资讯

选择币别

EUR
USD
CAD
AUD
NZD
NOK
GBP
CHF
SEK
CNY
UAH
ILS
SAR
MXN
KRW
MYR
SGD
HUF
TRY
JPY
HKD
TWD
facebookinstagram
©2020 东东购 EasternEast.com

限时特卖:用“SALE15”优惠券全场书籍85折!可与三本88折,六本78折的优惠叠加计算。 忽略