描述
开 本: 16开纸 张: 轻型纸包 装: 平装-胶订是否套装: 否国际标准书号ISBN: 9787229160159
1、作者秦九韶是中国南宋著名的数学家,与李冶、杨辉、朱世杰并称宋元数学四大家。
2、曾先后被明清两代的编纂大家选入集中国古籍之大成的《永乐大典》和《四库全书》。作为中国古代数学的一部之作,《数书九章》概括了宋元时期中国传统数学的主要成就,是对《九章算术》的全面继承和超越,被今日数学界誉为“中古数学发展的一座丰碑”。
3、《数书九章》将前代数学专著《孙子算经》《九章算术》等提出的计算方法灵活运用于实际问题,并提出了若干领先于当时世界的创新性算法:例如:大衍求一术,比西方高斯创用的同类方法早500多年,被公认为“中国剩余定理”;继贾宪增乘开方法进而作正负开方术,使之可对任意次方程的有理根或无理根来求解,被称为“秦九韶程序”,比19世纪英国数学家霍纳的同类方法早500多年;一元高次方程解法、多元一次方程组解法、三斜求积术等,与公元一世纪希腊数学家海伦给出的算法殊途同归。
《数书九章》全书分为九章十八卷,一章一类,共有“大衍类”“天时类”“田域类”“测望类”“赋役类”“钱谷类”“营建类”“军旅类”“市物类”等九类,每一类分布在两卷当中。每类9问,共计81问。全书内容极为丰富,上至天文、星象、历律、测候,下至河道、水利、建筑、运输,各种几何图形和体积,钱谷、赋役、市场、牙厘的计算和互易,充分体现了中国人的数学观和生活观。直至今日,《数书九章》中记载的许多计算方法和经验常数,仍有较高参考价值和实践意义。
第1类为“大衍类”,包括卷一、卷二。秦九韶在提出个问题“蓍卦发微”之后,先用较长的篇幅介绍了一种新的计算方法:大衍总数术。其中包括对正整数、小数、分数等数字类型的定义,以及用这些数字进行求公约数、化简的方法,例如“约奇弗约偶”“复乘求定”等操作。还包括“大衍求一术”,即解答一次同余式问题的方法,后来也被称作“中国剩余定理”,500多年后,德国数学家高斯才提出类似的计算方法。之后,秦九韶利用大衍术解决了9个不同领域的同余问题,涉及占卜、历法、建筑、货币换算、粮食交易、交通行程等方面。
第二类为“天时类”,包括卷三、卷四。其中的问题主要涉及三个方面。“推气治历”“治历推闰”“治历演纪”是有关历法方面的计算问题,“缀术推星”“揆日究微”是将数学方法应用于天文推算,而“天池测雨”“圆罂测雨”“峻积验雪”“竹器验雪”则是利用不同的容器去测量降雨、降雪的量,涉及容积计算等方法。
第三类为“田域类”,包括卷五、卷六。这一类的9个问题归纳总结了各种形状的田地面积的计算方法,例如不规则四边形、三角形、梯形、蕉叶形、环形等等,并且灵活处理了各种与田地面积相关的实际情况,例如被水冲去一部分后的剩余面积计算、三人分配田地的面积计算等。这一类的亮点在于两种先进计算方法的提出:一是已知三角形的三条边长,求三角形面积的“三斜求积术”,这和西方的海伦公式异曲同工;二是求解一元高次方程的“正负开方法”。
第四类为“测望类”,包括卷七、卷八。这一类主要将《九章算术》中的勾股术、重差术用于实际问题,设想出若干复杂情境去测量山峰的高度和距离、河水的宽度、正方形城墙的边长、圆形城墙的直径和周长等。在这一类中,作者将上一类中介绍的正负开方术加以进一步运用,求解出了一元10次方程。
第五类为“赋役类”,包括卷九、卷十。这一类中探讨了数学如何应用于古代社会经济民生为重要的问题之一:徭役赋税。其中有的问题关于不同等级的田地如何分配各类赋税(“复邑修赋”“围田租亩”),有的问题关于兴造工程需要的人力和工作量计算(“筑埂均功”),有的问题关于不同赋税内容之间的折算(“宽减屯租),等等。在这一类中使用的主要是来自《九章算术》的衰分、商功、粟米等计算方法及其拓展,所进行的主要是按比例分配、折算的数学方法操作。
第六类为“钱谷类”,包括卷十一、卷十二。这一类主要关注经济生活中的货币和粮食问题。例如不同货币之间的折算,不同地区米价的比较,囤米空间的尺寸计算,运送粮食的运费计算,钱库本金和利息的计算,以随机抽样法对粮食中的杂质进行计算,等等。这一类在“赋役类”的基础上增加了《九章算术》中少广、均输、盈不足等方法的运用。
第七类为“营建类”,包括卷十三、卷十四。这一类是秦九韶本人非常感兴趣的建筑问题,所营造的对象包括城墙、楼橹、石坝、河渠、清台、地基等,所计算的问题除了建筑的尺寸,还有所需各项材料以及人力的数量。在计算过程中,主要使用了《九章算术》中的商功、均输、少广以及方田等方法。
第八类为“军旅类”,包括卷十五、卷十六。这一类的9个问题都与军事有关,其中“计立方营”“方变锐阵”“计布圆阵”“圆营敷布”“望知敌众”是计算排兵布阵的不同形状和相应的人数分配,“均敷徭役”是关于如何按比例派遣士兵:“先计军程”计算行军的路程,“军器功程”“计造军衣”则是关于兵器、军服的制造问题。这一类仍然使用《九章算术》中的计算方法并有所拓展,关于阵法的计算与几何问题有关,需要使用勾股术等,而其他问题则使用了商功、均输、粟米、盈不足等方法。
第九类为“市物类”,包括卷十七、卷十八。“市物”,即交易货物。这一类中的问题均与商业买卖有关,例如对物价、资本、利息、租金等的计算。这一类中使用了来自《九章算术》的方田、衰分、粟米、方程等计算方法,其中对方程法进行了拓展,得到求解线性方程组的“互乘相消法”。在欧洲,早是公元1559年法国数学家布丢(约1490—1570年)开始用不很完整的加减消元法解一次方程组,比秦九韶晚了312年,且理论上的完整性也远逊于秦九韶。
本书的体例为:
“问”:描述情景,提出问题;
“答”:给出问题的答案;
“术”:描述计算方法;
“草”:给出详细的演算过程。
为了使读者能够更清晰地理解原文,注译者对原文中可能存在的疑难字词作了“注释”,并在每段原文的后面附上“译文”,在“术”的译文后面附上“译解”,在“草”的译文后面附上“术解”,使用精确而简洁的现代汉语和现代数学的表述方式对原文加以翻译和解读。其中有的问题“术”“草”较长,拆分为几段,各自附上注解、译文、译解或术解。
相较于《九章算术》等前人的数学著作,“草”是《数书九章》的一大亮点。在《数书九章》中,秦九韶不厌其烦地给出了每道题目的具体演算过程,其中计算步骤和得数一目了然,并配有算筹图。译者在“术解”时,均将之化作今日读者所习惯的阿拉伯数字和数学符号组成的算式,以利阅读和理解。
从小学、中学到大学的数学课堂,几乎都会提及秦九韶的定理、定律和解题法则,美国著名科学史家萨顿称秦九韶:“他是他那个民族、他那个时代,而且确实也是所有时代伟大的数学家之一。 ”日本著名数学史家三上义夫在精研《数书九章》的过程中,更是对中国古代数学的成就给予高度评价:“中国之算学,其发达已有二三千年的历史,以算学之发达,包含于如此之大文明中而有如此久长之历史,世界诸国未尝有也。”
本版《数书九章》全新插图本以期向广大读者呈现原著的博大精妙,发挥它在教学、研究和兴趣阅读上的功用,同时也顺便为普通读者管窥南宋时期社会经济、生产、军事、建筑等方面的知识提供一个特殊的参证视角。
“他是他那个民族、他那个时代,而且确实也是所有时代伟大的数学家之一。 ”
——萨顿
“中国之算学,其发达已有二三千年的历史,以算学之发达,包含于如此之大文明中而有如此久长之历史,世界诸国未尝有也。”
——三上义夫
评论
还没有评论。