描述
开 本: 128开纸 张: 胶版纸包 装: 平装-胶订是否套装: 否国际标准书号ISBN: 9787115611284
1.在Excel当中分步讲解机器学习方法,有效理解机器学习的底层原理;
2.数据挖掘的基础知识与Excel实例相结合,内容清晰,逻辑顺畅;
3.清楚地明晰机器学习的模型构建过程,帮助你在不写代码、不记忆复杂数学公式的情况下,牢固地掌握机器学习的核心概念。
本书通过Excel示例介绍常用的机器学习算法和数据挖掘技术。许多机器学习任务的目的是找到数据中的隐藏模式。Excel能够清楚地展示机器学习建模过程的每一步及中间结果,让你不仅知其然,还知其所以然。第1章解释用Excel学习机器学习的益处。第2~12章分别介绍线性回归、k均值聚类、线性判别分析、交叉验证、logistic回归、k近邻、朴素贝叶斯分类、决策树、关联分析、神经网络、文本挖掘。第13章总结全书内容,并为读者指出继续学习的方向。
第 1章 Excel和数据挖掘 1
1.1 为什么选择Excel 1
1.2 Excel 预备技巧 4
1.2.1 公式 5
1.2.2 自动填充或复制 5
1.2.3 引用 7
1.2.4 选择性粘贴和值粘贴 9
1.2.5 IF 函数 11
1.3 复习要点 17
第 2章 线性回归 18
2.1 一般性理解 18
2.2 通过Excel学习线性回归 22
2.3 通过Excel学习多元线性回归 25
2.4 复习要点 28
第3章 k均值聚类 29
3.1 一般性理解 29
3.2 通过Excel学习k均值聚类 30
3.3 复习要点 39
第4章 线性判别分析 40
4.1 一般性理解 40
4.2 规划求解 42
4.3 通过Excel学习线性判别分析 44
4.4 复习要点 53
第5章 交叉验证和ROC曲线分析 54
5.1 对交叉验证的一般性理解 54
5.2 通过Excel学习交叉验证 55
5.3 对ROC曲线分析的一般性理解 59
5.4 通过Excel学习ROC曲线分析 60
5.5 复习要点 65
第6章 logistic回归 66
6.1 一般性理解 66
6.2 通过Excel 学习logistic 回归 67
6.3 复习要点 73
第7章 k近邻 74
7.1 一般性理解 74
7.2 通过Excel 学习k 近邻 75
7.2.1 实验1 75
7.2.2 实验2 78
7.2.3 实验3 82
7.2.4 实验4 85
7.3 复习要点 87
第8章 朴素贝叶斯分类 88
8.1 一般性理解 88
8.2 通过Excel 学习朴素贝叶斯分类 90
8.2.1 练习1 91
8.2.2 练习2 94
8.3 复习要点 100
第9章 决策树 101
9.1 一般性理解 102
9.2 通过Excel 学习决策树 105
9.2.1 开始学习 105
9.2.2 更好的方法 115
9.2.3 应用模型 118
9.3 复习要点 120
第 10章 关联分析 121
10.1 一般性理解 122
10.2 通过Excel 学习关联分析 124
10.3 复习要点 131
第 11章 人工神经网络 132
11.1 一般性理解 132
11.2 通过Excel学习人工神经网络 134
11.2.1 实验1 134
11.2.2 实验2 143
11.3 复习要点 152
第 12章 文本挖掘 153
12.1 一般性理解 153
12.2 通过Excel学习文本挖掘 155
12.3 复习要点 168
第 13章 后记 169
评论
还没有评论。