描述
开 本: 16开纸 张: 纯质纸包 装: 平装-胶订是否套装: 否国际标准书号ISBN: 9787557699765
★ 2021年美国国家数学科学研究所“数学图书奖”推荐图书
★ “全球十佳教师”15年数学教学精华荟聚。被学生誉为“可以拯救全世界数学渣渣!”
★ 超级网红教师:YouTube粉丝超140万,视频总播放量超1亿次。
★ 26个生动有趣的故事,用身边现象,讲透数学的本质,原来世界处处是数学。让孩子看到数学多么美、多么有用。
★ 图文结合,版式活泼、案例生动,完美呈现数学的无穷魅力,很可能成为孩子的“数学潜能激活读物”,终身受益。
吴老师认为,学好数学并不难。数学就在我们周围,我们每个人都是天生的数学家。只要经过合适的引导,学会理解数学背后的美与逻辑,我们每个人都能爱上数学、擅长数学。
在这本书中,吴老师通过26个生动有趣的话题,如闪电和血管中蕴藏的分形几何知识、向日葵图案与斐波那契数列的奇妙关系、蝴蝶效应背后的数学解释、运用代数方法破解魔术等,向读者展示了运用数学思维理解问题、分析问题并终解决问题的全过程,为读者打开了隐藏在暗处的数学之门。
中文版序
前言
1. 天生的数学家
2. 神圣的圆
3.“动听的”数学
4. 穿过血管的闪电
5. 无限增多的存款?
6. 魔法数字e
7. 向日葵与黄金比例
8. 黄金数列在哪里?
9. 你身体里有多少绳结?
10. 牢不可破的锁
11. 我能推倒比萨斜塔吗?
12. 用数学预知未来
13. 蝴蝶效应
14. 数学钻石:帕斯卡三角
15. 一闪一闪亮晶晶
16. 不足,刚够,有余
17. 数字周期表
18. 渴望规律的眼睛
19. 说到底,什么是证明?
20. 在法庭里审判数字
21. 我的手机是个骗子
22. 数学魔术
23. 魔术师必修课:代数学
24. 为什么0不能做除数?
25. 左撇子为什么没有灭绝?
26. 充满钟摆的世界
致谢
前言
上学的时候,我觉得数学很无趣。我能学懂一部分,但认为它没什么意思:学习数学感觉就像努力去记某个游戏里一系列莫名其妙的规则,但这个游戏我既不理解,也没兴趣争胜。虽然我的确记住了一些概念和定理,但却很少体验到成就感,因为我总是犯一些老师们所说的“愚蠢的错误”——不小心算错数,答案自然不对。
十多岁的时候这似乎就是我对数学的全部认识:学习解题方法,找到专属于这道题的数字,也就是它的“解”。由于我从来不觉得这是一件轻松的事,所以我一直忍受着数学,既不享受,也不觉得自己擅长。取而代之的是,我把精力投入了那些容易接受得多的科目:英语、历史和戏剧。但在我19 岁那年,一切都变了。
我真诚地希望,打开这本书的你们都拥有和我类似的经历。数学从来不是你的强项。我如此希望的原因在于,如果你正捧着这本书,打算好好研读,那么和19 岁的我一样,你的故事还长。因为你看,我从19 岁开始接受训练,准备成为一名数学教师。考虑到刚才我对自己的描述,你可能有点惊讶——我保证会在后面解释自己如何“沦落”到了这等地步!但现在,重要的是:当我开始学习如何当一名高中教师的时候,我发现了一个秘密。确切地说,我发现了几百个秘密——因为我开始发现,数学和我曾经以为的很不一样。我开始明白波兰数学家斯特凡·巴拿赫(Stefan Banach)那句话的真正含义:“数学是人类头脑创造出的美、强大的事物。”
这就是本书的主题。我想带领你们踏上我曾经的旅程,让你们和当年的我一样理解:数学就在我们周围。
数学让我们得以看见、触摸宇宙中隐形的规则,数学还能帮助我们站到更高的层面去欣赏这个世界上我们热爱的所有事物。这些目标都很宏大——所以我们好赶紧开始!
祝阅读愉快。
吴老师对数学教育的理解非常深刻,他能够把世界上隐藏的数学以一种极具趣味性、循循善诱的方式讲述出来。
——李永乐老师,“国民老师”、科普“大V”
数学离我们并不远,彩虹里、向日葵花中,甚至我们的DNA里也暗藏着宇宙的数字奥秘。在《吴老师的趣味数学课》一书中,你将掌握一种足以受用一生的思维方式,学会用数学的眼光观察世界,用数学的思维思考世界,用数学语言表达世界。
——魏韧,中国数学奥林匹克一级教练、北京第十八中学党委书记
《吴老师的趣味数学课》用亲切的语言讲述着数学的故事,它会擦亮孩子们发现和探索的眼睛。原来,看起来深奥、神秘的数学就在我们身边。
——宓奇,人大附中三亚学校校长
数学是解释自然科学,包括生命科学的阶语言。
——尹烨,华大集团CEO
埃迪·吴是这个世界上好的数学老师之一。他的书就像他本人一样,轻快、热情、充满活力。
——史蒂夫·斯托加茨,康奈尔大学数学教授、畅销书《微积分的力量》作者
吴老师通过一系列短文揭示了数学以何种方式隐藏在日常生活的几乎每个角落里。字里行间洋溢的个人风格让这本书像他的授课视频一样熠熠生辉。
——齐斯·德福林,《数学的语言》作者、毕达哥拉斯奖和卡尔·萨根奖获得者
极好的数学入门书!……吴老师将复杂的数学编成了我们熟悉的有趣故事,使数学变得那样让人亲近。
——美国数学科学研究所“数学图书奖”评语
非常独特,埃迪·吴的写作风格非常口语化……用轻松诙谐的方式来介绍数学内容……温和中蕴藏着热情,本书广泛地介绍了数学中的各类有趣主题。
——美国数学协会
第1章 天生的数学家
人类天生就是数学家吗?
在一次广播采访中,有人向我提出了这个问题。当时我们讨论的话题是“人类是天生的科学家”。在生活中,你不需要教孩子怎样做实验、观察结果并重复这个过程,直到后证实或者证伪某个假设。这些行为完全出于本能,不需要任何正式训练。从这个角度来说,孩子们从睁眼的刻就开始用科学的方式思考、行动、探查周围的世界,哪怕他们对此并不自知。
那么,人类是天生的数学家吗?孩子们天生就会用数学的方式思考、行动吗?又或者这是一种后天习得的行为?
我之所以惦记这个问题,原因之一是,它和很多人的一个观念关系密切:有的人生来拥有数学能力,另一些人则不然,所以常有人说:
“数学不是我的菜。”
人们普遍认为,数学是一种只属于部分人的特殊才能。如果没有这种才能,那你永远没法真正理解它。很多人这样评价自己(还这样教孩子!)——但这句话真有什么现实依据吗?
要回答这个问题,首先我们需要厘清“数学家”的含义。这件事可能比你开始想的要难。生物学家研究活物,物理学家研究运动物体,化学家研究物质,天文学家研究恒星和行星,地质学家研究石头,这些定义完善的领域都有清晰的边界。但数学家呢,他们研究什么?出于直觉,你可能会说,数学家研究的是数字,但即便完全抛开数字,你也可以非常深入地探索诸多数学领域(例如几何学或者拓扑学)。既然如此,所有数学家有什么共同点呢?
大部分人给出的答案都是:所有数学家研究的都是规律。一对奇数加起来肯定是个偶数。任何多边形的外角和肯定等于360度,不管它是大是小,是规则还是不规则。帕斯卡三角[1] 每一行的和都是2 的幂。
物体在引力作用下的运动轨迹总是遵循圆锥曲线(无论它是圆、椭圆、抛物线,还是双曲线)。花朵中的小花总是按照一种非常特殊(和巧妙)的几何规律向外旋转。
所以,要给数学家感兴趣的领域划出边界是一件不可能的事情:他们对任何规律都有兴趣,而规律无处不在。
我们生活在一个充满规律的宇宙中。
这就是“宇宙”(cosmos)这个词的本意——秩序和规律。反过来说,“混沌”(chaos)则意味着无序、缺乏合理规律。
现在,我们可以明确地回答开头那个问题。当你问道,“人类生来就是数学家吗?”你实际上问的是,“人类生来就会寻找并试图理解周围的规律吗?
以这种方式陈述问题,一切就变得清晰起来。它的答案无疑是肯定的。人类大脑是当之无愧的规律识别机,它从骨子里擅长的就是捕捉周围的规律。大脑的几乎每一种功能都可以描述为它与规律之间的关系。什么是嗅觉?它是我们识别各种气味规律并以好(甜)和坏(苦)将之分别归类的能力。什么是记忆?它是规律与特殊意义之间的联系,比方说,我们靠面部和声音特征来认人。
我们平时说的“理解”和“技能”,其实主要指的是比一般人更有效地识别规律的能力。经验丰富的医生可以通过特定的症状规律诊断疾病。训练有素的出租车司机知道,该如何根据目前的位置和交通状况,选择去往目的地的路线和转弯时机。你会不断重复某些特定的规律,以至于它们渐渐成了你角色和性格的一部分——我们称之为“习惯”。
人类天生就是数学家吗?
在一次广播采访中,有人向我提出了这个问题。当时我们讨论的话题是“人类是天生的科学家”。在生活中,你不需要教孩子怎样做实验、观察结果并重复这个过程,直到后证实或者证伪某个假设。这些行为完全出于本能,不需要任何正式训练。从这个角度来说,孩子们从睁眼的刻就开始用科学的方式思考、行动、探查周围的世界,哪怕他们对此并不自知。
那么,人类是天生的数学家吗?孩子们天生就会用数学的方式思考、行动吗?又或者这是一种后天习得的行为?
我之所以惦记这个问题,原因之一是,它和很多人的一个观念关系密切:有的人生来拥有数学能力,另一些人则不然,所以常有人说:
“数学不是我的菜。”
人们普遍认为,数学是一种只属于部分人的特殊才能。如果没有这种才能,那你永远没法真正理解它。很多人这样评价自己(还这样教孩子!)——但这句话真有什么现实依据吗?
要回答这个问题,首先我们需要厘清“数学家”的含义。这件事可能比你开始想的要难。生物学家研究活物,物理学家研究运动物体,化学家研究物质,天文学家研究恒星和行星,地质学家研究石头,这些定义完善的领域都有清晰的边界。但数学家呢,他们研究什么?出于直觉,你可能会说,数学家研究的是数字,但即便完全抛开数字,你也可以非常深入地探索诸多数学领域(例如几何学或者拓扑学)。既然如此,所有数学家有什么共同点呢?
大部分人给出的答案都是:所有数学家研究的都是规律。一对奇数加起来肯定是个偶数。任何多边形的外角和肯定等于360度,不管它是大是小,是规则还是不规则。帕斯卡三角[1] 每一行的和都是2 的幂。
物体在引力作用下的运动轨迹总是遵循圆锥曲线(无论它是圆、椭圆、抛物线,还是双曲线)。花朵中的小花总是按照一种非常特殊(和巧妙)的几何规律向外旋转。
所以,要给数学家感兴趣的领域划出边界是一件不可能的事情:他们对任何规律都有兴趣,而规律无处不在。
我们生活在一个充满规律的宇宙中。
这就是“宇宙”(cosmos)这个词的本意——秩序和规律。反过来说,“混沌”(chaos)则意味着无序、缺乏合理规律。
现在,我们可以明确地回答开头那个问题。当你问道,“人类生来就是数学家吗?”你实际上问的是,“人类生来就会寻找并试图理解周围的规律吗?
以这种方式陈述问题,一切就变得清晰起来。它的答案无疑是肯定的。人类大脑是当之无愧的规律识别机,它从骨子里擅长的就是捕捉周围的规律。大脑的几乎每一种功能都可以描述为它与规律之间的关系。什么是嗅觉?它是我们识别各种气味规律并以好(甜)和坏(苦)将之分别归类的能力。什么是记忆?它是规律与特殊意义之间的联系,比方说,我们靠面部和声音特征来认人。
我们平时说的“理解”和“技能”,其实主要指的是比一般人更有效地识别规律的能力。经验丰富的医生可以通过特定的症状规律诊断疾病。训练有素的出租车司机知道,该如何根据目前的位置和交通状况,选择去往目的地的路线和转弯时机。你会不断重复某些特定的规律,以至于它们渐渐成了你角色和性格的一部分——我们称之为“习惯”。
评论
还没有评论。