描述
开 本: 16开纸 张: 胶版纸包 装: 平装-胶订是否套装: 否国际标准书号ISBN: 9787111754206
配套资源:电子课件、实验和案例讲解视频、教学大纲、习题答案、模拟试题、程序代码、数据集。
本书特色:
强调实际生产中深度学习技术的应用过程。
提供8个综合实践应用案例。
本书共分为三个部分,分别为理论基础、实验和案例。这三个部分层层递进,介绍深度学习的基础知识与常用方法,全面细致地提供了深度学习的原理和在深度学习框架下的实践步骤。第一部分主要通过7个章节来介绍深度学习的基础知识,包括深度学习在不同领域的应用,不同深度学习框架的对比,以及机器学习、神经网络等方面的讲解。第二部分主要包括常用深度学习框架的基础讲解以及计算机视觉、自然语言处理、强化学习和可视化技术领域的一些实验讲解。第三部分则是提供8个案例,来介绍深度学习在图像分类、目标检测、目标识别、图像分割、风格迁移、自然语言处理等方面的应用。本书将理论与实践紧密结合,相信能为读者提供有益的学习指导。 本书适合Python深度学习初学者、机器学习算法分析从业人员以及高等院校计算机科学、软件工程等相关专业的师生阅读。
前言
第1部分深度学习理论基础
第1章深度学习简介
11计算机视觉
111定义
112基本任务
113传统方法
114仿生学与深度学习
115现代深度学习
116卷积神经网络
12自然语言处理
121自然语言处理的基本问题
122传统方法与神经网络方法的比较
123发展趋势
13强化学习
131什么是强化学习
132强化学习算法简介
133强化学习的应用
14本章小结
习题
第2章深度学习框架
21PyTorch
211什么是PyTorch
212PyTorch的特点
213PyTorch应用概述
22TensorFlow
221什么是TensorFlow
222数据流图
223TensorFlow的特点
224TensorFlow应用概述
23PaddlePaddle
231什么是PaddlePaddle
232PaddlePaddle的特点
233PaddlePaddle应用概述
24三者的比较
25本章小结
习题
第3章机器学习基础知识
31机器学习概述
311关键术语
312机器学习的分类
313机器学习的模型构造过程
32监督学习
321线性回归
322逻辑斯谛回归
323最小近邻法
324线性判别分析法
325朴素贝叶斯分类器
326决策树分类算法
327支持向量机分类算法
33无监督学习
331划分式聚类方法
332层次化聚类方法
333基于密度的聚类方法
34强化学习
341强化学习、监督学习和无监督学习
342强化学习问题描述
343强化学习问题分类
35神经网络和深度学习
351感知器模型
352前馈神经网络
353卷积神经网络
354其他类型结构的神经网络
36本章小结
习题
第4章回归模型
41线性回归模型
42Logistic回归模型
43用PyTorch实现Logistic回归
431数据准备
432线性方程
433激活函数
434损失函数
435优化算法
436模型可视化
44本章小结
习题
第5章神经网络基础
51基础概念
52感知器
521单层感知器
522多层感知器
53BP神经网络
531梯度下降
532反向传播
54Dropout正则化
55批标准化
551批标准化的实现方式
552批标准化的使用方法
56本章小结
习题
第6章卷积神经网络(CNN)与计算机视觉
61卷积神经网络的基本思想
62卷积操作
63池化层
64卷积神经网络
65经典网络结构
651VGG网络
652InceptionNet
653ResNet
654GAN
655Diffusion模型
66用PyTorch进行手写数字识别
67本章小结
习题
第7章神经网络与自然语言处理
71语言建模
72基于多层感知机的架构
73基于循环神经网络的架构
731循环单元
732通过时间反向传播
733带有门限的循环单元
734循环神经网络语言模型
735神经机器翻译
74基于卷积神经网络的架构
75基于Transformer的架构
751多头注意力
752非参位置编码
753编码器单元与解码器单元
76表示学习与预训练技术
761词向量
762加入上下文信息的特征表示
763网络预训练
77本章小结
习题
第2部分深度学习实验
第8章操作实践
81PyTorch操作实践
811PyTorch安装
812Tensor 对象及其运算
813Tensor 的索引和切片
814Tensor的变换、拼接和拆分
815PyTorch的Reduction操作
816PyTorch的自动微分
82TensorFlow操作实践
821TensorFlow安装
822Tensor 对象及其运算
823Tensor 的索引和切片
824Tensor 的变换、拼接和拆分
825TensorFlow的Reduction操作
826TensorFlow 的自动微分
83PaddlePaddle操作实践
831PaddlePaddle安装
832Tensor 的创建和初始化
833Tensor的常见基础操作
834自动微分
84本章小结
第9章人工智能热门研究领域实验
91计算机视觉
911一个通用的图像分类模型
912两阶段目标检测和语义分割
913人物图像处理
914调用远程服务
915动漫图像生成
92自然语言处理
921垃圾邮件分类
922词嵌入技术
923文本生成与多轮对话
924语音识别
93强化学习:一个会玩平衡摆的智能体
94可视化技术
941使用TensorBoard可视化训练过程
942卷积核可视化
943注意力机制可视化
95本章小结
第3部分深度学习案例
第10章案例:花卉图片分类
101环境与数据准备
1011环境安装
1012数据集简介
1013数据集下载与处理
102模型创建、训练和测试
1021模型创建与训练
1022测试与结果
103本章小结
第11章案例:人脸关键点检测
111数据准备
1111人脸裁剪与缩放
1112数据归一化处理
1113整体代码
112模型搭建与训练
1121特征图生成
1122模型搭建
1123模型训练
113模型评价
114本章小结
第12章案例:街景门牌字符识别
121背景介绍
122算法介绍
1221YOLOv4
1222算法流程
123模型优化
1231数据增强
1232模型融合
124结果展
深度学习是学习样本数据的内在规律和表示层次,在这些学习过程中获得的信息对文字、图像和声音等数据的解释有很大的帮助。它的最终目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据。深度学习是一种复杂的机器学习算法,在语音和图像识别方面取得的效果远远超过先前的相关技术。
深度学习在搜索技术、数据挖掘、机器学习、机器翻译、自然语言处理、多媒体学习、语音、推荐和个性化技术及其他相关领域都取得了很多成果。深度学习使机器模仿视听和思考等人类的活动,解决了很多复杂的模式识别难题,使得人工智能相关技术取得了很大进步。
深度学习是机器学习的一种,而机器学习是实现人工智能的必经路径。深度学习的概念源于人工神经网络的研究,包含多个隐藏层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层来表示属性类别或特征,以发现数据的分布式特征表示。研究深度学习的动机在于建立模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,如图像、声音和文本等。
本书的写作目的是让读者尽可能深入理解深度学习的技术。此外,本书强调将理论与实践结合,简明的案例不仅能加深读者对于理论知识的理解,还能直观感受到实际生产中深度学习技术的应用过程。
本书第1部分主要通过7章来介绍深度学习的基础知识,包括深度学习在计算机视觉、自然语言处理、强化学习等方面的应用,不同深度学习框架的介绍和对比,以及机器学习、神经网络等方面的内容。第2部分主要是本书的实验部分,包括PyTorch、TensorFlow、PaddlePaddle这三个深度学习框架的基础讲解,以及计算机视觉、自然语言处理、强化学习和可视化技术领域的一些实验讲解。第3部分则是提供了综合实践案例,通过8个案例来介绍深度学习在图像分类、目标检测、目标识别、图像分割、风格迁移、自然语言处理等方面的应用。
为了实现深度学习,我们需要经历许多考验,需要花费很长时间,但是相应地也能学到和发现很多东西,而且这也是一个有趣的、令人兴奋的过程。
本书编写人员有吕云翔、王志鹏、王渌汀、郭闻浩、刘卓然、王礼科、赵禹昇、谭家俊、陈天异、仇善召、关捷雄、姜丰、华昱云、陈妙然、梁晶晶、屈茗若、陈翔宇、欧阳植昊。此外,曾洪立参与了部分内容的编写并进行了素材整理及配套资源制作等工作。
由于编者水平和能力有限,书中难免有疏漏之处,恳请各位同人和广大读者给予批评指正,也希望各位读者能将实践过程中的经验和心得与我们交流。
评论
还没有评论。