描述
开 本: 16开纸 张: 胶版纸包 装: 平装-胶订是否套装: 否国际标准书号ISBN: 9787111764939
系统阐述机器学习的基本理论、算法和实现。
每章配有基于Python的实验,方便读者编程实现。
书后附有丰富的彩色插图,引导读者对理论的理解。
配套提供电子课件、微课视频、习题答案、教学大纲、源代码、试卷。
本书系统阐述了机器学习的基本理论、算法和实现。全书共11章:第1章着重介绍了机器学习的基本知识;第2章介绍了样本数据预处理和提取的传统算法(如PCA和LDA),并增加了流形学习和稀疏表征等理论;第3~8章系统介绍了传统机器学习算法,如监督学习(贝叶斯、近邻、线性模型、非线性模型和集成学习)和非监督学习(聚类);第9、10章分别介绍了概率图模型和人工神经网络的基本理论;第11章着重讲述了强化学习的基本理论和算法。
本书针对理论难点,插入了可视化图,引导读者对理论的理解;每章配有习题,以便指导读者深入地进行学习。每章还配有基于Python的实验,便于工程类读者快速将理论转化为实践应用,也方便学术型读者编程实现。
本书既可作为高等院校本科和研究生人工智能、控制工程、信息处理和智能制造等相关专业的课程教材,也可作为信息系统开发和大数据分析人员的技术参考书。
前言
第1章基本知识
11什么是机器学习
111属性
112标注
12机器学习的分类
121监督与无监督学习
122分类与回归
13模型评估
131分类模型评估
132回归模型评估
14优化
141损失函数
142目标函数
143最小二乘法
144梯度下降法
145梯度修正
146学习率调整
15小结与拓展
实验一:模型评价函数编程实验
习题
参考文献
第2章表征学习
21表征学习的目的
22数据预处理
23主成分分析
231目标函数
232基于主成分分析表征学习模型
233人脸PCA表征学习
24线性鉴别分析
241类内散布矩阵和类间散布矩阵
242类可判别性测度
243LDA原理
244人脸的LDA表征学习
25多维缩放
26流形学习
261流形
262等度量映射
263局部线性嵌入
27随机近邻嵌入
271基本随机近邻嵌入
272t分布随机近邻嵌入
28稀疏表征
281压缩感知
282重构算法
283字典学习
284压缩感知在人脸识别中的应用
29小结与拓展
实验二:表征学习实验
习题
参考文献
第3章贝叶斯分类器
31贝叶斯基本概念
32贝叶斯决策准则
33高斯混合模型
34未知概率密度函数估计
341极大似然估计
342极大后验概率估计
343期望极大算法
35朴素贝叶斯
36拉普拉斯平滑
37小结与拓展
实验三:贝叶斯分类器实验
习题
第4章近邻分类器
41近邻规则
42加权近邻分类器
43近邻分类器加速策略
431移除消极样本
432构建搜索树
433部分维度距离计算
44小结与拓展
实验四:近邻分类器实验
习题
参考文献
第5章线性模型
51二类线性模型
52Lasso回归
521Lasso回归求解
522坐标轴下降法
53逻辑回归
54支持向量机
541线性可分支持向量机
542近似线性可分支持向量机
55多类线性模型
551基本策略
552Softmax回归
56类不平衡问题
561阈值移动
562数据再平衡
57小结与拓展
实验五:线性模型实验
习题
参考文献
第6章非线性模型
61二次判别分析
62核方法
621希尔伯特空间
622核函数
623常用核函数
624核函数的应用
63小结与拓展
实验六:非线性模型实验
习题
参考文献
第7章集成学习
71集成学习理论依据
72集成学习机制
73决策树
731什么是决策树
732ID3和C45
733分类回归树
734剪枝
74随机森林
75自适应助推
751学习过程
752基本原理
76小结与拓展
实验七:集成学习实验
习题
参考文献
第8章聚类
81聚类基本理论
811聚类的性质
812相似性测度
813类簇中心
814聚类算法评价指标
82K均值聚类
83层次聚类
831凝聚筑巢
832平衡迭代削减层次聚类
84密度聚类
841DBSCAN
842高斯混合聚类
85小结与拓展
实验八:聚类实验
习题
参考文献
第9章概率图模型
91联合概率
92概率有向图模型
921基本概念
922有向分离
923贝叶斯网络
924隐马尔可夫模型
93概率无向图模型
931条件独立性
932团和势函数
933条件随机场
934马尔可夫随机场在图像处理中的应用
935条件随机场在自然语言处理中的应用
94因子图与和积算法
941因子图
942置信传播
95小结与拓展
实验九:概率图模型实验
习题
参考文献
第10章人工神经网络
101神经元及其基本模型
102激活函数
1021饱和激活函数
1022校正线性单元
1023swish激活函数
1024其他激活函数
103感知机
1031参数学习
1032感知机的异或难题
104前馈神经网络
1041前馈神经网络模型
1042三层前向神经网络实现异或门
1043反向传播算法
105卷积神经网络
1051互相关和卷积
1052卷积神经网络架构
1053卷积神经网络残差反向传播
106简单卷积神经网络
1061LeNet-5
1062AlexNet
1063VGGNet
1064Inception
1065ResNet
107小结与拓展
实验十:人工神经网络实验
习题
参考文献
第11章强化学习
111强化学习概述
1111基本概念
1112策略评估和策略控制
1113强化学习分类
112表格强化学习
1121蒙特卡洛
1122动态规划
1123时序差分学习
113深度强化学习
1131深度Q网络(DQN)
1132Dueling 网络
114小结与拓展
实验十一:强化学习实验
习题
参考文献
机器学习已经广泛应用于现代制造业、农业、交通、航空航天和通信等领域,给产业部门生产和管理赋予了智能化,极大地提高了生产力,是新质生产力的基本理论。机器学习在人们日常消费中也得到了广泛应用,改善了人民的生活质量。
目前,大部分国内高等院校相关专业都开设了机器学习或相关课程。国内也涌现了许多相关优秀教材,这些教材大体可分为两类。其中,一类教材理论层次较深,通常要求读者具有一定的数学理论基础,较适合于有数学、计算机或控制工程专业背景的读者;另一类则是注重实践开发,此类教材理论介绍不多,适合于毕业后从事工程开发的普通高校和专科院校的学生。
在国内在读研究生群体中,即便硕士阶段所学专业是计算机、人工智能和控制工程等专业,由于并不具备学习机器学习所需要的相关基础知识,他们可能在学习阶段没有时间补充相关基础知识,这就需要一本层次介于上述两类教材之间的“机器学习”教材。
为适应国内大量普通高等院校学生的需要,编者撰写本书旨在将理论和实践结合,将抽象理论形象化,以便更多读者能够学习并会应用。
本书对理论有一定的推导,并且配有丰富的插图(部分图片彩色印刷,请见书后插页),阅读时不需要较深的数学理论,非数学、计算机或控制工程专业读者也可以选购阅读。书中所介绍的实验都是在PyCharm环境下调试运行通过的,建议读者具备一定的Python编程基础。
本书提供知识点视频,可通过扫描书中二维码观看视频。本书每章配备一个实验,所有实验由在读研究生张洪涛、姬广毅和朱铭津上机验证并录制视频。书中很多插图由胡沁夏绘制。
本书可作为相关专业本科生或研究生的课程教材,每章后附有习题。建议本科生授课课时64学时(包括16学时实验),研究生授课课时32学时(学生根据研究兴趣选择完成)。
本书得到了广州大学研究生优秀教材资助,诚表感谢!
感谢父母的谆谆教导和培养、妻子的支持和儿子的期望!
本书在编写过程中参考了国内外一些优秀书籍,在此表示诚挚的谢意!
由于时间仓促和编者水平有限,书中难免存在错误和不妥之处,恳请读者谅解并提出宝贵意见。
评论
还没有评论。